Analisis Multidimensi Pada Perkuliahan Untuk Memperbaiki Pencapaian CLO Mahasiswa Tingkat 4

  • Nizur Adha Telkom University
  • Rachmadita Andreswari Universitas Telkom
  • Taufik Nur Adi Universitas Telkom
Keywords: Process Mining, Multidimensional Analysis, Process Cube, Event Log

Abstract

In this research, process mining methods are utilized for the analysis of the learning processes of fourth-year students. Multidimensional analysis is applied to gain a more comprehensive understanding of the data, and process cubes provide an overview of the data from various dimensions. Supported by Celonis tools, the learning process models are discovered from different perspectives such as time, courses, instructors, Course Learning Outcomes (CLO), and CLO scores. The application of these methods results in process models that provide insights from the perspective of different dimensions. Conformance checking is conducted to assess the alignment of the process models with the event log. The best conformance values for each process model are transformed into BPMN to facilitate information dissemination. The obtained information serves as recommendations for designing the optimal learning processes for fourth-year students in the subsequent semester.

Downloads

Download data is not yet available.

References

Fakultas Rekayasa Industri, Buku Kurikulum 2020 Program Studi : S1 Sistem Informasi. Bandung , 2020.

Telkom University, “Telkom University Laksanakan Perkuliahan Hybrid Blended Learning,” May 19, 2022. https://telkomuniversity.ac.id/telkom-university-laksanakan-perkuliahan-hybrid-blended-learning/ (accessed Nov. 10, 2022).

Telkom University, “CeLOE LMS,” 2018.

G. Feng, M. Fan, and C. Ao, “Exploration and Visualization of Learning Behavior Patterns From the Perspective of Educational Process Mining,” IEEE Access, vol. 10. Institute of Electrical and Electronics Engineers Inc., pp. 65271–65283, 2022. doi: 10.1109/ACCESS.2022.3184111.

P. Zerbino, A. Stefanini, and D. Aloini, “Process science in action: A literature review on process mining in business management,” Technol Forecast Soc Change, vol. 172, Nov. 2021, doi: 10.1016/j.techfore.2021.121021.

A. Lamani, B. Erraha, M. Elkyal, and A. Sair, “Data mining techniques application for prediction in OLAP cube,” International Journal of Electrical and Computer Engineering, vol. 9, no. 3, pp. 2094–2102, Jun. 2019, doi: 10.11591/ijece.v9i3.pp2094-2102.

Celonis, “Celonis,” 2023. https://www.celonis.com/company/ (accessed Jul. 03, 2023).

L. Dignan, “What is Execution Management?,” Jun. 22, 22AD. https://www.celonis.com/blog/what-is-execution-management/ (accessed Jul. 03, 2023).

M. Kerremans, K. Iijima, A. R. Sachelarescu, N. Duffy, and D. Sugden, “Magic Quadrant for Process Mining Tools,” Mar. 20, 2023. https://www.gartner.com/doc/reprints?id=1-2CZI8XWU&ct=230320&st=sb (accessed Jul. 03, 2023).

E. Fabiola, R. Ledesma, E. Moreno Galván, E. A. Carmona García, and L. I. Garay Jiménez, “Educational Tool for Generation and Analysis of Multidimensional Modeling on Data Warehouse,” 2020. [Online]. Available: www.ijacsa.thesai.org

G. Li, E. G. L. de Murillas, R. M. de Carvalho, and W. M. P. van der Aalst, “Extracting object-centric event logs to support process mining on databases,” in Lecture Notes in Business Information Processing, Springer Verlag, 2018, pp. 182–199. doi: 10.1007/978-3-319-92901-9_16.

W. Ahmed, E. Zimányi, A. A. Vaisman, and R. Wrembel, “A Temporal Multidimensional Model and OLAP Operators,” International Journal of Data Warehousing and Mining, vol. 16, no. 4, pp. 112–143, Oct. 2020, doi: 10.4018/IJDWM.2020100107.

L. Juhaňák, J. Zounek, and L. Rohlíková, “Using process mining to analyze students’ quiz-taking behavior patterns in a learning management system,” Comput Human Behav, vol. 92, pp. 496–506, Mar. 2019, doi: 10.1016/j.chb.2017.12.015.

L. Reinkemeyer Editor, “Process Mining in Action Principles, Use Cases and Outlook.”

N. N. Hasanah and A. S. Purnomo, “Implementasi Data Mining Untuk Pengelompokan Buku Menggunakan Algoritma K-Means Clustering (Studi Kasus : Perpustakaan Politeknik LPP Yogyakarta),” Jurnal Teknologi Dan Sistem Informasi Bisnis, vol. 4, no. 2, pp. 300–311, Jul. 2022, doi: 10.47233/jteksis.v4i2.499.

A. F. Ghahfarokhi, A. Berti, and W. M. P. van der Aalst, “Process Comparison Using Object-Centric Process Cubes,” Mar. 2021, [Online]. Available: http://arxiv.org/abs/2103.07184

J. Leprince, C. Miller, and W. Zeiler, “Data mining cubes for buildings, a generic framework for multidimensional analytics of building performance data,” Energy Build, vol. 248, Oct. 2021, doi: 10.1016/j.enbuild.2021.111195.

A. N. Yulianty, R. Andreswari, and D. Witarsyah, “ANALISIS DAN PENERAPAN PROSES MINING TERHADAP EVENT LOG DALAM MENENTUKAN PENILAIAN PEMBELAJARAN HYBRID MENGGUNAKAN ALGORITMA FUZZY MINING (STUDI KASUS E-LEARNING UNIVERSITAS TELKOM),” 2022.

N. F. Fahrudin, “PROSES MINING UNTUK OPTIMASI PROSES BISNIS,” 2020.

S. Canifah, R. Andreswari, and R. Fauzi, “Analysis of Student Learning Pattern in Learning Management System (LMS) using Heuristic Mining a Process Mining Approach,” 2021.

W. van der Aalst, “Data Requirements — Process Mining Book 3.0,” 2022. https://fluxicon.com/book/read/dataext/ (accessed Jan. 01, 2023).

W. M. P. van der Aalst, “Object-Centric Process Mining: The next frontier in business performance,” 2023.

U. ÇELİK and E. AKÇETİN, “Process Mining Tools Comparison,” AJIT-e Online Academic Journal of Information Technology, vol. 9, no. 34, pp. 97–104, Nov. 2018, doi: 10.5824/1309-1581.2018.4.007.x.

P. Bhatia, “Data Mining and Data Warehousing,” 2019.

W. Hachicha, L. Ghorbel, R. Champagnat, C. A. Zayani, and I. Amous, “Using process mining for learning resource recommendation: A Moodle case study,” in Procedia Computer Science, Elsevier B.V., 2021, pp. 853–862. doi: 10.1016/j.procs.2021.08.088.

Published
2023-10-03
How to Cite
Adha, N., Andreswari, R., & Adi, T. N. (2023). Analisis Multidimensi Pada Perkuliahan Untuk Memperbaiki Pencapaian CLO Mahasiswa Tingkat 4. Jurnal Teknologi Dan Sistem Informasi Bisnis, 5(4), 431-439. https://doi.org/10.47233/jteksis.v5i4.952
Section
Articles