Implementasi Algoritma K-Means untuk Klasifikasi Citra Biota Laut: Gurita, Lobster, dan Kerang Laut

Abstract
Advances in digital image processing technology and machine learning, such as clustering, have contributed to increased efficiency in various sectors, including marine and fisheries. Octopus, lobsters, and shellfish are high-value fishery commodities that have traditionally been classified manually, with the potential for subjectivity and inefficiency. This study aims to develop a digital image classification model for marine biota using the K-Means Clustering method equipped with image processing techniques. The methods applied include converting the RGB color space to L*a*b, segmentation with K-means, shape feature extraction (metric, eccentricity) and GLCM texture (contrast, correlation, energy, homogeneity). The results show that this method is effective in identifying the three types of marine biota with an average accuracy of 95% based on testing on 30 images. The implementation of K-means Clustering has been proven to be accurate and consistent in the automation of marine biota classification.
Downloads
References
Yuhandri, et al. “Pengenalan Teknologi Pengolahan Citra Digital.” Community Development Journal, vol. 3, no. 2, 2022.
Feriska Amalia, V. & Dewi, R. “Penilaian Kesegaran Ikan dengan K-NN.” JATI, vol. 8, no. 4, 2024.
Rosyadi, I. et al. “Penerapan Citra Berbasis K-Means untuk Deteksi Penyakit Bulai.” Just IT, vol. 13, no. 3, 2023.
Aula, S. “Klasterisasi Pola Penjualan Pestisida Menggunakan K-Means.” DJIECHNO, vol. 1, no. 1, 2021.
Gafari, A. & Ramadhanu, A. “Klasifikasi Citra Digital Batu Kerikil dan Batu Kali.” JATI, vol. 9, no. 2, 2025.
Saputra, R. et al. “Klasifikasi Timun Segar dan Busuk Menggunakan K-Means.” Journal of Education Research, vol. 5, no. 4, 2024.
Yolanda, et al. “Identifikasi Cerdas Apel Fuji dan Apel Hijau.” Journal of Education Research, vol. 5, no. 3, 2024.
Sinaga, A. S. “Segmentasi Ruang Warna L*a*b.” Jurnal Mantik Penusa, vol. 3, no. 1, 2019.
Numaningsih, D. et al. “Identifikasi Citra Tanaman Obat
dengan Euclidean Distance.” BITS, vol. 3, no. 3, 2021.
Salsabila, A. et al. “Identifikasi Citra Bunga dengan KNN dan GLCM.” Technomedia Journal, vol. 6, no. 1, 2021.
Yanti, R. et al. “Identifikasi Pisang Emas dan Pisang Kapas.” Journal of Education Research, vol. 5, no. 4, 2024.

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under an Attribution 4.0 International (CC BY 4.0) that allows others to share — copy and redistribute the material in any medium or format and adapt — remix, transform, and build upon the material for any purpose, even commercially with an acknowledgment of the work's authorship and initial publication in this journal.