Implementasi Algoritma K-Means Pada Pengolahan Citra Untuk Deteksi Bentuk Dan Material Gelas
Abstract
Digital image processing is a branch of computer science that plays a significant role in automating object identification processes. This study presents the implementation of the K-Means Clustering algorithm for detecting the shape and material of drinking glasses based on digital images. The research methodology involves several stages, including image data collection, color space conversion from RGB to Lab, image segmentation using K-Means Clustering, and feature extraction of shape and texture. The K-Means algorithm is employed to cluster image pixels into multiple groups according to color similarity and texture patterns, thereby enabling the classification of glasses based on their material (glass, plastic, or clay) and shape. The experimental results demonstrate that the proposed method achieves a high level of accuracy in object identification and can be effectively implemented within a Matlab-based system. Consequently, this approach offers a potential solution for the automation of drinking container identification in various industrial and research applications.
Downloads
References
Ferdiana, A. D., & Anwar, S. N. (2023). Pengembangan Chatbot untuk Informasi Wisata Interaktif di Tangerang Selatan menggunakan Framework Rasa. Jurnal Teknologi dan Sistem Informasi Bisnis, 5(4), 476-483.
Maryuni, D., & Ramadhanu, A. (2025). Pemanfaatan K-Means untuk klasifikasi citra toge dan jamur enoki berdasarkan fitur bentuk dan tekstur. Jurnal Quancom, 3(1), 32–37. https://doi.org/10.62375/jqc.v3i1.610
Ramadani, S., & Ramadhono, A. (2025). Implementasi metode K-Means clustering untuk mengklasterikasikan kipas angin dengan teknik pengolahan citra. Jurnal Informatika Teknologi dan Sains (JINTEKS), 7(1), 354–360.
Rifdaturrohiidah, N. (2019). Analisis tingkat pemahaman mahasiswa Fakultas Kedokteran Universitas Sebelas Maret tentang pentingnya minum air putih sebagai upaya pencegahan penyakit gagal ginjal. Universitas Sebelas Maret.
Saputra, R., Dila, R., & Ramadhanu, A. (2024). Klasifikasi timun segar dan busuk menggunakan K-Means clustering. Journal of Education Research, 5(4), 4799–4806.
Suwanda, A. E., & Juniati, D. (2022). Klasifikasi penyakit mata berdasarkan citra fundus retina menggunakan dimensi fraktal box counting dan fuzzy K-means. Jurnal Penelitian Matematika dan Pendidikan Matematika, 5(1), 10–18.
Windyastika, L., & Priyatmoko, H. (2020). Lidah pribumi bergoyang: Rijsttafel dan gaya hidup elite Jawa di Vorstenlanden 1900-1942. Bandar Maulana: Jurnal Sejarah Kebudayaan, 25(1), 15–30. https://ejournal.uiidalwa.ac.id/index.php/al-jadwa/article/download/1033/512
Yasmin, N., Akbar, S. C. D., & Ramadhanu, A. (2024). Penerapan K-Means Clustering untuk Klasifikasi Citra Cabai Keriting: Studi Ekstraksi Warna dan Tekstur GLCM. Indonesian Journal Computer Science, 3(2), 65–71.
Zhang, Y., Guo, J., & Deng, Q. (2023). Identification of ancient glass products based on K-means composition analysis. Academic Journal of Materials & Chemistry, 4(3), 39–46. https://doi.org/10.25236/AJMC.2023.040306

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under an Attribution 4.0 International (CC BY 4.0) that allows others to share — copy and redistribute the material in any medium or format and adapt — remix, transform, and build upon the material for any purpose, even commercially with an acknowledgment of the work's authorship and initial publication in this journal.






























