Prapemrosesan untuk Klasifikasi Gambar Aksara OKU Timur

Abstract
This study investigates methods to enhance the quality of OKU Timur script images through preprocessing techniques utilizing Adaptive Thresholding. The OKU Timur script, significant for daily communication and traditional ceremonies, encounters challenges such as skew, rotation, and low resolution in image processing. The proposed preprocessing approach includes contrast normalization to improve image clarity, noise reduction to eliminate unwanted artifacts, and feature extraction to emphasize critical image characteristics. These steps are designed to enhance the accuracy of character recognition. The findings indicate that proper preprocessing is crucial for effective recognition of OKU Timur script and holds substantial potential for preserving this cultural heritage through modern technological applications.
Downloads
References
A. Santoso and M. Nasir, “Pemetaan Lahan dan Komoditas Pertanian Berbasis Webgis di Kabupaten OKU Timur,” Jurnal Ilmiah Betrik, vol. 12, no. 02, 2021.
E. Roza, “Aksara Arab-Melayu di Nusantara dan Sumbangsihnya dalam Pengembangan Khazanah Intelektual,” TSAQAFAH Jurnal Peradaban Islam, vol. 13, no. 1, p. 177, May 2019, doi: 10.21111/tsaqafah.v13i1.982.
W. Anggraini, “KEANEKARAGAMAN HAYATI DALAM MENUNJANG PEREKONOMIAN MASYARAKAT KABUPATEN OKU TIMUR,” Jurnal Aktual STIE Trisna Negara, vol. 16, no. 2, 2018.
D. Anisa Martadala, E. Redi Susanto, and I. Ahmad, “MODEL DESA CERDAS DALAM PELAYANAN ADMINISTRASI (STUDI KASUS: DESA KOTABARU BARAT KECAMATAN MARTAPURA KABUPATEN OKU TIMUR),” Jurnal Teknologi dan Sistem Informasi (JTSI), vol. 2, no. 2, pp. 40–51, 2021, [Online]. Available: http://jim.teknokrat.ac.id/index.php/JTSI
R. Putra Wijaya, “Optical Character Recognition Menggunakan Relevance Vector Machine Pada Ekstrasi Citra E-KTP,” 2020.
A. Riyandi and S. Uyun, “IMPROVEMENT OF HANDWRITING JAVASCRAFT IMAGE QUALITY AND SEGMENTATION WITH CLOSING MORPHOLOGY AND ADAPTIVE THRESHOLDING METHODS,” Jurnal Informatika dan Teknologi Informasi, vol. 19, no. 3, pp. 311–322, 2022, doi: 10.31515/telematika.v19i3.7564.
S. Aulya Aqhiela, “PENDETEKSI CACAT BUAH JERUK DENGAN IMAGE,” Buana Ilmu, vol. 6, no. 2, 2022.
A. Saputra, “KLASIFIKASI PENGENALAN BUAH MENGGUNAKAN ALGORITMA NAIVE BAIYES,” Jurnal Resistor, vol. 2, no. 2, 2019, [Online]. Available: http://jurnal.stiki-indonesia.ac.id/index.php/jurnalresistor
F. Dona Marleny and Mambang, “Klasifikasi Citra OPTIMASI GENETIC ALGORITHM DENGAN JARINGAN SYARAF TIRUAN UNTUK KLASIFIKASI CITRA,” JTIULM, vol. 4, no. 1, 2019.
J. Siswanto, A. A. Qalban, and S. N. Lahay, “Aplikasi Sistem Pakar Klasifikasi Kesehatan Lingkungan Permukiman Dengan Metode Certainty Factors,” Jurnal Teknologi Dan Sistem Informasi Bisnis, vol. 5, no. 2, pp. 103–112, Apr. 2023, doi: 10.47233/jteksis.v5i2.787.
P. Kandhway and A.K. Bhandari, “An optimal adaptive thersholding based sub-histogram equalization for brightness preserving image contrast enhancement,” Multidimens. Syst. Signal Process., vol. 30, pp. 1859-1894, 2014
A. E. Ilesanmi and T. O. Ilesanmi, “Methods for image denoising using convolutional neural network: a review,” Complex Intell. Syst., vol. 7, no. 5, pp. 2179–2198, 2021.
S. Uyun, S. Rahardyan, and M. Anshari, “Skew Correction and Image Cleaning Handwriting Recognition Using a Convolutional Neural Network,” JOIV Int. J. Inform. Vis., vol. 7, no. 3, pp. 681–687, 2023.
S. S. M. N. Akhter and P. P. Rege, “Improving skew detection and correction in different document images using a deep learning approach,” in 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT), IEEE, 2020, pp. 1–6.
S. V. M. Sagheer and S. N. George, “A review on medical image denoising algorithms,” Biomed. Signal Process. Control, vol. 61, p. 102036, 2020.
N. Cao and Y. Liu, “High-noise grayscale image denoising using an improved median filter for the adaptive selection of a threshold,” Appl. Sci., vol. 14, no. 2, p. 635, 2024.
S. Faizullah, M. S. Ayub, S. Hussain, and M. A. Khan, “A survey of OCR in Arabic language: applications, techniques, and challenges,” Appl. Sci., vol. 13, no. 7, p. 4584, 2023.
R. Gelar Guntara, “Pemanfaatan Google Colab Untuk Aplikasi Pendeteksian Masker Wajah Menggunakan Algoritma Deep Learning YOLOv7,” Jurnal Teknologi Dan Sistem Informasi Bisnis, vol. 5, no. 1, pp. 55–60, Feb. 2023, doi: 10.47233/jteksis.v5i1.750.
D. Wicaksono, P. Almeyda, I. Mikola, M. Putra, and L. Malihatuningrum, “Analisis Perbandingan Metode Pra Pemrosesan Citra untuk Deteksi Tepi Canny pada Citra Berbagai Kondisi Jalan menggunakan Bahasa Pemrograman Python,” Jurnal Teknologi dan Ilmu Komputer Prima, vol. 7, no. 1, 2024.
T. Alhamid and B. Anufia, “INSTRUMEN PENGUMPULAN DATA.”
S. Abidin, “Deteksi Wajah Menggunakan Metode Haar Cascade Classifier Berbasis Webcam Pada Matlab,” Jurnal Teknologi Elektrika, vol. 15, no. 1, 2019.
G. C. Setyawan and M. P. Nawansari, “Kinerja Penapisan Gaussian dan Median Dalam Pelembutan Citra,” JIFOTECH (JOURNAL OF INFORMATION TECHNOLOGY, vol. 2, no. 2, 2022.
D. Dwi Oktavianus, B. Urip Pandiangan, M. Daffa Rian Fahlefi, and P. Rosyani, “Analisis Deteksi dan Penghitungan Kendaraan di Jalan Tol dengan OpenCV-Python Menggunakan Metode Image Thresholding dan Contours,” Jurnal Artificial Inteligent dan Sistem Penunjang Keputusan, vol. 2, no. 2, 2024.
A. Maulana, F. Auliatunnajah, N. Rosidin, M. Ramadien Rizki Darmawan, and P. Rosyani, “Implementasi OpenCV dengan Metode Image Thresholding pada Gambar,” Jurnal Artificial Inteligent dan Sistem Penunjang Keputusan, vol. 2, no. 1, 2024, [Online]. Available: https://jurnalmahasiswa.com/index.php/aidanspk
N. N. Hasanah and A. S. Purnomo, “Implementasi Data Mining Untuk Pengelompokan Buku Menggunakan Algoritma K-Means Clustering (Studi Kasus : Perpustakaan Politeknik LPP Yogyakarta),” Jurnal Teknologi Dan Sistem Informasi Bisnis, vol. 4, no. 2, pp. 300–311, Jul. 2022, doi: 10.47233/jteksis.v4i2.499.
R. Nur Amalia, R. Setia Dianingati, and E. Annisaa, “PENGARUH JUMLAH RESPONDEN TERHADAP HASIL UJI VALIDITAS DAN RELIABILITAS KUESIONER PENGETAHUAN DAN PERILAKU SWAMEDIKASI,” Generics : Journal of Research in Pharmacy Accepted : 4 Mei, vol. 2, no. 1, 2022.
D. Mohammad Firdaus, Jusak, and I. Puspasari, “METODE ADAPTIVE THRESHOLDING UNTUK DENOISING PADA DISCRETE WAVELET TRANSFORM,” Journal of Control and Network Systems, vol. 6, no. 1, 2017, [Online]. Available: http://jurnal.stikom.edu/index.php/jcone

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under an Attribution 4.0 International (CC BY 4.0) that allows others to share — copy and redistribute the material in any medium or format and adapt — remix, transform, and build upon the material for any purpose, even commercially with an acknowledgment of the work's authorship and initial publication in this journal.