Klasifikasi Citra Alat Musik Marakas, Gitar, dan Drum Menggunakan Metode K-Means dan GLCM
Abstract
The development of digital image processing technology enables automatic object identification with high accuracy. This study aims to classify images of musical instruments, namely maracas, guitars, and drums, using a combination of K-Means-based color segmentation and Gray Level Co-Occurrence Matrix (GLCM) feature extraction. The process begins with converting RGB images into the Lab color space, followed by object segmentation using the K-Means clustering algorithm to separate the main object from the background. Subsequently, shape features (metric, eccentricity) and texture features (contrast, correlation, energy, homogeneity) are extracted using GLCM. The extracted features are then compared with a feature database using a distance-based approach to determine the object class. Experimental results show that the system can successfully recognize maracas, guitar, and drum images with a satisfactory accuracy level. This research demonstrates that the combination of K-Means and GLCM methods can serve as an effective approach for musical instrument image classification and has the potential to be further developed for object recognition in other fields
Downloads
References
K. Ariasa, I. Gede, A. Gunadi, and I. Made Candiasa, “OPTIMASI ALGORITMA KLASTER DINAMIS PADA K-MEANS DALAM PENGELOMPOKAN KINERJA AKADEMIK MAHASISWA (STUDI KASUS: UNIVERSITAS PENDIDIKAN GANESHA).”
Sujacka Retno, Bustami, and Rozzi Kesuma Dinata, “Enhancing K-Means Clustering Model to Improve Rice Harvest
A. Yudhistira and R. Andika, “Pengelompokan Data Nilai Siswa Menggunakan Metode K-Means Clustering,” Journal of Artificial Intelligence and Technology Information (JAITI), vol. 1, no. 1, pp. 20–28, Feb. 2023, doi: 10.58602/jaiti.v1i1.22.Musamus, U. (2025). Jurnal Pengabdian UNDIKMA: 6(1), 81–89.
N. Yasmin et al., “Penerapan K-Means Clustering untuk Klasifikasi Citra Cabai Keriting: Studi Ekstraksi Warna dan Tekstur GLCM,” Journal Computer Science, vol. 3, no. 2, 2024.Reba, A., Hilapok, F., Studi, P., Paud, P. G., & Cenderawasih, U. (2025). Pelatihan Penggunaan Artificial Intelligence dalam Menyusun Bahan Pembelajaran Bagi Guru PAUD di Kabupaten Jayapura Training on the Use of Artificial Intelligence in Jayapura Regency. 9(1), 99–109. Wakhidah, S. (2010).
Wakhidah, S. (2010). Cara Kerja danImplementasi Algoritma K-Means dalam Pengolahan Citra. Jurnal Teknologi Komputer, 3(2), 21-35.
Yuda Permadi & Murinto, H. (2015).Ekstraksi Ciri Statistik untuk Identifikasi Kematangan Mentimun Menggunaka Pengolahan Citra.Jurnal Teknologi Pertanian, 10(4),105-120.
Renaldo, B., Suryani, S., & Fatih, M. (2022). Aplikasi MATLAB dalam Pengolahan Citra Tanaman untuk Identifikasi Kesehatan Daun. Jurnal Pengolahan Citra, 7(1), 60-72.
Rachmadhany Iman, D.,& Wakhidah, S. (2024). Optimalisasi Penggunaan K-Means Clustering dalam Klasifikasi Citra Daun untuk Deteksi Kesehatan Tanaman. Jurnal Teknologi Pertanian, 11(5), 77-89.
Ratna Indah Juwita Harahap, A. B., & Firdaus, M. (2024). Analisis Kesehatan Tanaman dengan Pengolahan Citra: Penerapan Teknologi pada Daun Sehat dan Rusak. Jurnal Ilmu Pertanian, 13(2), 32-45.
Oktamia Anggraini Putri. (2022). Penerapan Konversi RGB ke LAB dalam Segmentasi Citra Daun. Jurnal Ilmu Komputer dan Sistem, 14(4), 58-66.

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under an Attribution 4.0 International (CC BY 4.0) that allows others to share — copy and redistribute the material in any medium or format and adapt — remix, transform, and build upon the material for any purpose, even commercially with an acknowledgment of the work's authorship and initial publication in this journal.






























