Unleashing the Potentials of Artificial Intelligence for Micro, Small, and Medium Enterprises: A Systematic Literature Review

  • Muhammad Raihan Satrio Putra Pamungkas Universitas Pendidikan Indonesia
  • Angellina Asyivadibrata Universitas Pendidikan Indonesia
  • Tasya Susilawati Universitas Pendidikan Indonesia
  • Mochamad Nurul Huda Universitas Pendidikan Indonesia
Keywords: artificial intelligence, msme, systematic literature review


Artificial intelligence has undergone rapid evolution, reaching a level of sophistication where it is now considered a personal assistant, aiding humans in their daily tasks. The potential of artificial intelligence can be observed in almost every sector of life including the business sector. Limited resources and skill capabilities especially for micro, small, and medium enterprises tend to hinder progress. However, given the current advanced level of artificial intelligence, it has emerged as an innovative and cost-effective solution to support business actors. This research systematically examines and discusses the potential of utilizing artificial intelligence in the business sector from credible and scientific sources. A systematic literature review methodology is used for this study. The review encompasses Scopus-indexed journals published between 2019 and 2023, with additional open-access publications. Based on the research findings, 106 studies were found, however, after the screening process the number of studies is reduced to 13 articles. Customer churn management emerged as the most prominent utilization of artificial intelligence. On the other hand, from a technological perspective, optimization technique emerged as the most frequently addressed topic in the examined studies.  


Download data is not yet available.


A. Vaswani et al., “Attention Is All You Need,” in 31st Conference on Neural Information Processing Systems, 2017, no. 30. doi: 10.1007/978-3-319-29409-4_3.

L. Zhou et al., “Intelligence Augmentation: Towards Building Human- machine Symbiotic Relationship,” AIS Trans. Human-Computer Interact., vol. 13, no. 2, pp. 243–264, 2021, doi: 10.17705/1thci.00149.

S. L. Wamba-Taguimdje, S. Fosso Wamba, J. R. Kala Kamdjoug, and C. E. Tchatchouang Wanko, “Influence of artificial intelligence (AI) on firm performance: the business value of AI-based transformation projects,” Bus. Process Manag. J., vol. 26, no. 7, pp. 1893–1924, 2020, doi: 10.1108/BPMJ-10-2019-0411.

K. Fonseka, A. A. Jaharadak, and M. Raman, “Impact of E-commerce adoption on business performance of SMEs in Sri Lanka; moderating role of artificial intelligence,” Int. J. Soc. Econ., vol. 49, no. 10, pp. 1518–1531, 2022, doi: 10.1108/IJSE-12-2021-0752.

M. Kumar, R. D. Raut, S. K. Mangla, A. Ferraris, and V. K. Choubey, “The adoption of artificial intelligence powered workforce management for effective revenue growth of micro, small, and medium scale enterprises (MSMEs),” Prod. Plan. Control Manag. Oper., pp. 1–17, 2022, doi: 10.1080/09537287.2022.2131620.

M. Yetrina and D. S. Nainggolan, “Penentuan Rute Distribusi Untuk Meminimasi Biaya Distribusi di UKM Habil Snack,” J. Teknol. Dan Sist. Inf. Bisnis, vol. 3, no. 1, pp. 247–253, 2021, doi: 10.47233/jteksis.v3i1.221.

A. M. Ramdan, E. E. Pramiarsih, R. Herdhiana, R. Zahara, and C. Lisnawati, “Challenges and opportunities for utilizing MSME digital marketing applications in tourism areas,” Int. J. business, Econ. Manag., vol. 5, no. 3, pp. 131–142, 2022, doi: 10.21744/ijbem.v5n3.1912.

A. O. Siagian and Y. Cahyono, “Strategi Pemulihan Pemasaran UMKM di Masa Pandemi Covid-19 Pada Sektor Ekonomi Kreatif,” J. Teknol. Dan Sist. Inf. Bisnis, vol. 3, no. 1, pp. 206–217, 2021, doi: 10.47233/jiteksis.v3i1.212.

E. B. Hansen and S. Bøgh, “Artificial intelligence and internet of things in small and medium-sized enterprises: A survey,” J. Manuf. Syst., vol. 58, no. April 2021, pp. 362–372, 2021, doi: 10.1016/j.jmsy.2020.08.009.

C. Szedlak, P. Poetters, and B. Leyendecker, “Application of artificial intelligence in small and medium-sized enterprises,” Proc. Int. Conf. Ind. Eng. Oper. Manag., no. August, pp. 1574–1582, 2020.

K. R. Ririh, N. Laili, A. Wicaksono, and S. Tsurayya, “Studi Komparasi dan Analisis Swot Pada Implementasi Kecerdasan Buatan (Artificial Intelligence) di Indonesia,” J. Tek. Ind., vol. 15, no. 2, pp. 122–133, 2020.

O. D. Jabar, “Jumlah Usaha Mikro Kecil Menengah (UMKM) Berdasarkan Kabupaten/Kota di Jawa Barat,” 2022.

A. Carrera-Rivera, W. Ochoa, F. Larrinaga, and G. Lasa, “How-to conduct a systematic literature review: A quick guide for computer science research,” MethodsX, vol. 9, p. 101895, 2022, doi: 10.1016/j.mex.2022.101895.

D. Pati and L. N. Lorusso, “How to Write a Systematic Review of the Literature,” Heal. Environ. Res. Des. J., vol. 11, no. 1, pp. 15–30, 2018, doi: 10.1177/1937586717747384.

Y. Xiao and M. Watson, “Guidance on Conducting a Systematic Literature Review,” J. Plan. Educ. Res., vol. 39, no. 1, pp. 93–112, 2019, doi: 10.1177/0739456X17723971.

E. M. Shehab, M. W. Sharp, L. Supramaniam, and T. A. Spedding, “Enterprise resource planning: An integrative review,” Bus. Process Manag. J., vol. 10, no. 4, pp. 359–386, 2004, doi: 10.1108/14637150410548056.

Y. Suh, Machine learning based customer churn prediction in home appliance rental business, vol. 10, no. 1. Springer International Publishing, 2023. doi: 10.1186/s40537-023-00721-8.

J. Faritha Banu, S. Neelakandan, B. T. Geetha, V. Selvalakshmi, A. Umadevi, and E. O. Martinson, “Artificial Intelligence Based Customer Churn Prediction Model for Business Markets,” Comput. Intell. Neurosci., vol. 2022, 2022, doi: 10.1155/2022/1703696.

C. Shao and X. Chen, “Deep-Learning-Based Financial Message Sentiment Classification in Business Management,” Comput. Intell. Neurosci., vol. 2022, 2022, doi: 10.1155/2022/3888675.

J. Qiu and W. Chen, “The Analysis of Environmental Cost Control of Manufacturing Enterprises Using Deep Learning Optimization Algorithm and Internet of Things,” Comput. Intell. Neurosci., vol. 2022, 2022, doi: 10.1155/2022/1721157.

X. Chen and Z. Long, “E-Commerce Enterprises Financial Risk Prediction Based on FA-PSO-LSTM Neural Network Deep Learning Model,” Sustain., vol. 15, no. 7, 2023, doi: 10.3390/su15075882.

K. Matuszelański and K. Kopczewska, “Customer Churn in Retail E-Commerce Business: Spatial and Machine Learning Approach,” J. Theor. Appl. Electron. Commer. Res., vol. 17, no. 1, pp. 165–198, 2022, doi: 10.3390/jtaer17010009.

S. Agarwal, “Deep Learning-based Sentiment Analysis: Establishing Customer Dimension as the Lifeblood of Business Management,” Glob. Bus. Rev., vol. 23, no. 1, pp. 119–136, 2022, doi: 10.1177/0972150919845160.

X. Li, C. Ma, and Y. Lv, “Environmental Cost Control of Manufacturing Enterprises via Machine Learning under Data Warehouse,” Sustain., vol. 14, no. 18, 2022, doi: 10.3390/su141811571.

S. J, C. Gangadhar, R. K. Arora, P. N. Renjith, J. Bamini, and Y. devidas Chincholkar, “E-commerce customer churn prevention using machine learning-based business intelligence strategy,” Meas. Sensors, vol. 27, no. December 2022, p. 100728, 2023, doi: 10.1016/j.measen.2023.100728.

H. Zhang, “A Deep Learning Model for ERP Enterprise Financial Management System,” Adv. Multimed., vol. 2022, 2022, doi: 10.1155/2022/5783139.

O. Wisesa, A. Adriansyah, and O. I. Khalaf, “Prediction Analysis for Business To Business (B2B) Sales of Telecommunication Services using Machine Learning Techniques,” Majlesi J. Electr. Eng., vol. 14, no. 4, pp. 145–153, 2020, doi: 10.29252/mjee.14.4.145.

F. Sánchez-Torres, I. González, and C. C. Dobrescu, “Machine Learning in Business Intelligence 4.0: Cost Control in a Destination Hotel,” Int. J. Interact. Multimed. Artif. Intell., vol. 7, no. 3, pp. 86–95, 2022, doi: 10.9781/ijimai.2022.02.008.

S. Yi and X. Liu, “Machine learning based customer sentiment analysis for recommending shoppers, shops based on customers’ review,” Complex Intell. Syst., vol. 6, no. 3, pp. 621–634, 2020, doi: 10.1007/s40747-020-00155-2.

J. Zhao, L. Zhang, and Y. Zhao, “Informatization of Accounting Systems in Small- and Medium-Sized Enterprises Based on Artificial Intelligence-Enabled Cloud Computing,” Comput. Intell. Neurosci., vol. 2022, 2022, doi: 10.1155/2022/6089195.

A. Amin et al., “A review of optimal charging strategy for electric vehicles under dynamic pricing schemes in the distribution charging network,” Sustain., vol. 12, no. 23, pp. 1–28, 2020, doi: 10.3390/su122310160.

How to Cite
Pamungkas, M. R. S. P., Asyivadibrata, A., Susilawati, T., & Huda, M. N. (2023). Unleashing the Potentials of Artificial Intelligence for Micro, Small, and Medium Enterprises: A Systematic Literature Review. Jurnal Teknologi Dan Sistem Informasi Bisnis, 5(3), 303-310. https://doi.org/10.47233/jteksis.v5i3.860