Mengontruksi Kontrol Optimal Berkendala Pada Sistem LTI Dengan Keadaan Berkendala Menggunakan Metode Fungsi Penalti
Abstract
The optimal control problem is defined as a problem in determining the control u(t) that depends on time t, such that it produces the optimum value for the objective function. The optimal control system with constrained conditions can be changed to an optimal control system without constraints by constructing the value of u(t) so that u(t) is not constrained. In this research, we will examine how to determine an optimal control of a system of time-independent state space or Linear Time Invariant (LTI) with constrained states and minimize a given objective function. In addition, how to construct an optimal controller that is constrained to become an optimal controller without constraints using the penalty function method and its implementation using Matlab. The results of this study are that the optimal control is:.
Downloads
References
Anton, H. 1991. Aljabar Linier Elementer Edisi Kedelapan-Jilid 1. Erlangga. Jakarta.
Beauthier, C. dan Joseph J. Winkin. 2010. LQ-Optimal Control of Positive Linear System. Wiley Online Library.
Bahri, S. 2017. Teori Pengoptimuman. FMIPA UNRAM. Mataram
Budi, W.S. 2001. Kalkulus Peubah Banyak dan Penggunaannya. ITB Press. Bandung.
B.W. Kort and D.P Bertsekas. 1972. A New Penalti function method for constrained minimization. IEEE Conference on Decision and Control.
Coit, A.E.1997. Penalti Funcion. USA: IOP Publishing Ltd and Oxford University Press.
Hendricks. Elbert, Ole. Jannerup dan P. H. Sorensen. 2008. Linear Systems Control. Springer- Verlag Berlin Heidelberg.
Lewis, F.L. Vrabie, D.L., & Syrmos, V.L. 2012. Optimal Control Third Edition. Wiley. New Jersey.
Lian, S. Meng, S. & Wang, Y. 2018. An Objective Penalty Function-Based Method for Inequality Constrained Minimization Proble. Hindawi.
Meyer. Carl D. 2000. Matrix Analysis and Applied Linear Algebra. SIAM
Naidu, D.S. 2002. Optimal Control Systems. CRC Press, Idaho.
Purcell. Varberg., & Rigdon. 2010. Kalkulus Edisi Kesembilan-Jilid 2. Erlangga. Jakarta
Roszak, B. dan Davidson, E. J. 2009. Necessary and Sufficient Conditions for Stabilizability of Positive LTI System. System and Control Letters 58(2009). 474-481.
Rina, I., & Putri, N. (2022). Menentukan Panjang Pipa Terpendek Untuk Pemasangan Jaringan Pipa Pdam Di Kecamatan Koto Tangah Kota Padang. Jurnal Teknologi Dan Sistem Informasi Bisnis, 4(1), 84-88.
Sulfayanti. Toaha, S., & Khaerudin. 2014. Aplikasi Kontrol Optimal pada Perubahan Perilaku Manusia. Jurnal Matematika, Statistika, dan Komputasi. Vol.11, No.1.
Yu. C, Teo. K & Zhang, L. 2010. A New Exact Penalty Function Method For Continuous Inequality Constrained Optimization Problems. Journal of Industrial And Management Optimization Vol 6, No 4.
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under an Attribution 4.0 International (CC BY 4.0) that allows others to share — copy and redistribute the material in any medium or format and adapt — remix, transform, and build upon the material for any purpose, even commercially with an acknowledgment of the work's authorship and initial publication in this journal.