Mengontruksi Kontrol Optimal Berkendala Pada Sistem LTI Dengan Keadaan Berkendala Menggunakan Metode Fungsi Penalti

  • Nurweni Putri Prodi Matematika, Universitas Dharma Andalas
  • Iswan Rina Prodi Matematika, Universitas Dharma Andalas

Abstract

The optimal control problem is defined as a problem in determining the control u(t) that depends on time t, such that it produces the optimum value for the objective function. The optimal control system with constrained conditions can be changed to an optimal control system without constraints by constructing the value of u(t) so that u(t) is not constrained. In this research, we will examine how to determine an optimal control of a system of time-independent state space or Linear Time Invariant (LTI) with constrained states and minimize a given objective function. In addition, how to construct an optimal controller that is constrained to become an optimal controller without constraints using the penalty function method and its implementation using Matlab. The results of this study are that the optimal control is:.

Downloads

Download data is not yet available.

References

Anton, H. 1991. Aljabar Linier Elementer Edisi Kedelapan-Jilid 1. Erlangga. Jakarta.

Beauthier, C. dan Joseph J. Winkin. 2010. LQ-Optimal Control of Positive Linear System. Wiley Online Library.

Bahri, S. 2017. Teori Pengoptimuman. FMIPA UNRAM. Mataram

Budi, W.S. 2001. Kalkulus Peubah Banyak dan Penggunaannya. ITB Press. Bandung.

B.W. Kort and D.P Bertsekas. 1972. A New Penalti function method for constrained minimization. IEEE Conference on Decision and Control.

Coit, A.E.1997. Penalti Funcion. USA: IOP Publishing Ltd and Oxford University Press.

Hendricks. Elbert, Ole. Jannerup dan P. H. Sorensen. 2008. Linear Systems Control. Springer- Verlag Berlin Heidelberg.

Lewis, F.L. Vrabie, D.L., & Syrmos, V.L. 2012. Optimal Control Third Edition. Wiley. New Jersey.

Lian, S. Meng, S. & Wang, Y. 2018. An Objective Penalty Function-Based Method for Inequality Constrained Minimization Proble. Hindawi.

Meyer. Carl D. 2000. Matrix Analysis and Applied Linear Algebra. SIAM

Naidu, D.S. 2002. Optimal Control Systems. CRC Press, Idaho.

Purcell. Varberg., & Rigdon. 2010. Kalkulus Edisi Kesembilan-Jilid 2. Erlangga. Jakarta

Roszak, B. dan Davidson, E. J. 2009. Necessary and Sufficient Conditions for Stabilizability of Positive LTI System. System and Control Letters 58(2009). 474-481.

Rina, I., & Putri, N. (2022). Menentukan Panjang Pipa Terpendek Untuk Pemasangan Jaringan Pipa Pdam Di Kecamatan Koto Tangah Kota Padang. Jurnal Teknologi Dan Sistem Informasi Bisnis, 4(1), 84-88.

Sulfayanti. Toaha, S., & Khaerudin. 2014. Aplikasi Kontrol Optimal pada Perubahan Perilaku Manusia. Jurnal Matematika, Statistika, dan Komputasi. Vol.11, No.1.

Yu. C, Teo. K & Zhang, L. 2010. A New Exact Penalty Function Method For Continuous Inequality Constrained Optimization Problems. Journal of Industrial And Management Optimization Vol 6, No 4.

Published
2023-05-11
How to Cite
Putri, N., & Rina, I. (2023). Mengontruksi Kontrol Optimal Berkendala Pada Sistem LTI Dengan Keadaan Berkendala Menggunakan Metode Fungsi Penalti. Jurnal Teknologi Dan Sistem Informasi Bisnis, 5(2), 164-169. https://doi.org/10.47233/jteksis.v5i2.801
Section
Articles