ANALISA DAN IMPLEMENTASI ASSOCIATION RULE DENGAN ALGORITMA FP-GROWTH DALAM SELEKSI PEMBELIAN TANAH LIAT (STUDI KASUS DI PT. ANVEVE ISMI BERJAYA)
Abstract
Data Mining aims to draw abstract knowledge of a big database.Data Mining also known as Knowledge Discovery Database. FP-Growth algorithm is one of the very popular algorithms in finding frequent itemset in finding the rule of a large data base. Association rule used to find patterns in market basket analysis. Steps in the process of association rule mining is confidence and support. Clay formed from the weathering of silica by carbonic acid and partly generated by geothermal activity. In this study using FP-Growth Algorithm in purchasing decisions withdrawal clay by PT. ISMI ANVEVE BERJAYA
Downloads
References
Aggarwal, S., & Kaur, R. (2013). Comparative Study of Various Improved Versions of Apriori Algorithm. International Journal of Engineering Trends and Technology (IJETT), 4(4l), 687–690.
Angeline, D. Magdalene, D. (2013). Association Rule Generation for Student Performance Analysis using Apriori Algorithm. The SIJ Transactions on Computer Science Engineering & Its Applications (CSEA), 1(1), p12--16.
Defit, S. (2013). Penggunaan Algorithma Apriori Dalam Menganalisa Prilaku Mahasiswa Dalam Memilih Mata Kuliah ( Studi Kasus : Fkip Upi “ Yptk ” ), 8(3), 31–42.
Gunadi, G., & Sensuse, D. I. (2012). Penerapan Metode Data Mining Market Basket Analysis Terhadap Data Penjualan Produk Buku Dengan Menggunakan Algoritma Apriori Dan Frequent Pattern Growth ( Fp-Growth ) : Telematika, 4(1), 118–132.
Ikhwan, A., Nofriansyah, D., & Sriani. (2015). Penerapan Data Mining dengan Algoritma Fp-Growth untuk Mendukung Strategi Promosi Pendidikan ( Studi Kasus Kampus STMIK Triguna Dharma ). Saintikom, 14(3), 211–226.
Jiawei, H., Kamber, M., & Pei, J. (2012). Data Mining: Concepts and Techniques. San Francisco, CA, itd: Morgan Kaufmann. https://doi.org/10.1016/B978-0-12-381479-1.00001-0
Kurniawati, A. (2014). Pemetaan Pola Hubungan Program Studi Dengan Algoritma Apriori Studi Kasus SPMU UNNES. EDUKOM, 1(1), 51–58.
Obaje, S. O., Omada, J. I., & Dambatta, U. A. (2013). Clays and their Industrial Applications : Synoptic Review. International Journal of Science and Technology, 3(5), 264–270.
Ririanti. (2014). Implementasi Algoritma Fp-Growth Pada Aplikasi Prediksi Persediaan Sepeda Motor ( Studi Kasus Pt . Pilar Deli Labumas ). Pelia Informatika Budi Darma, VI(1), 139–144.
Sari, E. N. (2013). Analisa Algoritma Apriori Untuk Menentukan Merek Pakaian Yang Paling Diminati Pada Mode Fashion Group Medan. Jurnal Teknik Informatika, IV, 35–39.
Sidhu, S. (2014). FP Growth Algorithm Implementation, 93(8), 6–10.
Singh, J., & Ram, H. (2013). Improving efficiency of Apriori algorithm using transaction reduction. International Journal of Scientific and Research Publications, 3(1), 1–4.
Suresh, J., Rushyanth, P., & Trinath, C. (2013). Generating associations rule mining using Apriori and FPGrowth Algorithms. International Journal of Computer Trends and Technology, 4(4), 887–892.
Tampubolon, K., Saragih, H., Reza, (2013). Implementasi Data Mining Algoritma Apriori Pada Sistem Persediaan Alat-Alat Kesehatan. Informasi Dan Teknologi Ilmiah, 93–106.
Arno, S., 2018. SISTEM INFORMASI GEOGRAFIS OBJEK WISATA KABUPATEN LIMA PULUH KOTA UNTUK MENDUKUNG PROMOSI PARIWISATA DAERAH. Jurnal Sains dan Informatika, 4(2), p.118.
Sularno, S. and Anggraini, P., 2017. PENERAPAN ALGORITMA C4.5 UNTUK KLASIFIKASI TINGKAT KEGANASAN HAMA PADA TANAMAN PADI (Studi Kasus : Dinas Pertanian Kabupaten Kerinci). Jurnal Sains dan Informatika, 3(2), p.161.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under an Attribution 4.0 International (CC BY 4.0) that allows others to share — copy and redistribute the material in any medium or format and adapt — remix, transform, and build upon the material for any purpose, even commercially with an acknowledgment of the work's authorship and initial publication in this journal.