Memprediksi Penjualan Pada Toko Hanifah Metode C.45

  • Muhammad Afdhal Fakultas Ilmu Komputer, Universitas Putra Indonesia “YPTK” Padang, Jl Lubuk Begalung Padang
  • Vicky Ariandi Universitas Putra Indonesia “YPTK” Padang, Jl Lubuk Begalung Padang
  • Rita Rita Universitas Putra Indonesia “YPTK” Padang, Jl Lubuk Begalung Padang
Keywords: Decision Tree, Algorithm, pharmacy, waterfall,, black box testing

Abstract

Drug stocks in pharmacies are important information for the sales process. The existing stock is not in accordance with the needs of consumers, the distribution of drugs that are less needed in the stock will cause losses because the drug has expired due to too long stored in the warehouse. Another problem is that obat cannot predict drugs that are needed a lot, to overcome these problems needed a prediction system. These problems can be solved by the decision tree method for the prediction of drug supplies. The concept of the Decision Tree Algorithm is to convert data into decision trees and decision rules. System development with Waterfall model, using PHP programming language, My SQL database, system design using object oriented approach, system testing using Black Box for functionality test, validity testing with rapid miner tools. The result of the development of the system is a prediction of drug sales at pharmacies. The result of black-box testing is that all developed systems work properly. The results of the validity test by comparing the old system with the new system with the rapid miner, using 30 transaction samples the accuracy is 89% which means the system has good performance.

Downloads

Download data is not yet available.

References

Amborowat. A, Winarko. E. 2014. Review pemanfaatan teknik data mining dalam segmentasi konsumen. KOMMIT 2014, Vol 8 hal (67-73).

Dita. H Anggraini, Saputra. R, Noranita. B. Aplikasi Data Mining Analisis Data Transaksi Penjualan Obat Menggunakan Algoritma Apriori (Studi Kasus Apotek Setya Sehat Semarang). Jurnal Masyarakat Informatika, Vol 4, No 7, ha l(1-8).

Dwi. M Tika Ramuna, Firdaus. W Mahmudy. 2015.Optimasi Persediaan Barang Dalam Poduksi Jilbab Menggunakan Agoritma Genetika. Repository Jurnal Mahasiswa PTIIK Universitas Brawijaya, vol. 5, no. 14, Hal (1-10).

Nurdin, Astika. D., 2015. Penerapan Data Mining Untuk Menganalisis Penjualan Barang Dengan Menggunakan Metode Apriori Pada Supermarket Sejahtera Lhokseumawe. TECHSI, Vol. 6 No.1, Hal (133-155).

Siti Mujilahwati,2017 Prosiding Seminar Nasional Teknologi dan Rekayasa Informasi Tahun 2017. Pemanfaatan Algoritma ID3 untuk Klasifikasi Penjualan Obat.

Sheu, Jyh-Jian. 2008. An Efficient Two-phase Spam Filtering Methode Based on E-mails categorization. International Journal of Network Security, Vol. 8, No. 3, PP.334-343, Taiwan

Susanto, dkk., 2015. Penerapan Data Mining Classification Untuk Prediksi Perilaku Pola Pembelian Terhadap Waktu Transaksi Menggunakan Metode Naïve Bayes. Konferensi Nasional Sistem & Informatika, STMIK STIKOM. Hal (313-318).

Wdyatmoko. H, Setiawan. A Honggowibowo, Cahyani. N Dewi Retnowati. 2012. Implementasi Data Mining Untuk Meramalkan Penjualan Di Minimarket Idola Jl Pati-Tambakromo Km 2 Desa Karangmulyo RT 08 RW 1 Dengan Metode Time Serie. Teknik Informatika STTA Yogyakarta.

Published
2022-07-01
How to Cite
Afdhal, M., Ariandi, V., & Rita, R. (2022). Memprediksi Penjualan Pada Toko Hanifah Metode C.45. Jurnal Teknologi Dan Sistem Informasi Bisnis, 4(2), 248-255. https://doi.org/10.47233/jteksis.v4i1.460