Deteksi Sampah Botol Plastik di Perairan Menggunakan YOLO v4-Tiny

  • Ubaidillah Ramadhan Nur Santoso Politeknik Elektronika Negeri Surabaya
  • Farida Gamar Politeknik Elektronika Negeri Surabaya
Keywords: waste detection, machine learning, mAp, IoU

Abstract

This study focuses on the implementation of the YOLOv4-Tiny algorithm on Raspberry Pi 5 for detecting plastic bottle waste in aquatic environments. The primary goal is to optimize the frame per second (FPS) while maintaining detection accuracy. A dataset consisting of 914 images was augmented using RoboFlow to enhance the robustness of the model under real-world conditions. Experiments were conducted in a controlled pool environment with an input resolution of 320x320 pixels. Results demonstrated an average FPS of 7-8, with detection accuracy ranging between 67% and 80%. Further evaluation reported a total loss of 0.3, mean Average Precision (mAP) of 97.94%, precision of 93%, recall of 96%, F1 score of 0.95, and an average Intersection over Union (IoU) of 76.47%, indicating effective bounding[1] box prediction capabilities. These results highlight the potential of YOLOv4-Tiny as a lightweight and real-time detection solution, particularly for low-computational devices such as Raspberry Pi. The findings provide a solid foundation for developing efficient plastic waste detection systems, which can be deployed across various aquatic locations, supporting environmental monitoring and waste management initiatives.

Downloads

Download data is not yet available.

References

T. Sipil, K. Mataram, and U. Denpasar, “STUDI LITERATUR DAMPAK MIKROPLASTIK TERHADAP LINGKUNGAN NI MADE NIA BUNGA SURYA DEWI.” [Online]. Available: http://journal.unmasmataram.ac.id/index.php/SOSINTEK

N. Putu and D. Arwini, “SAMPAH PLASTIK DAN UPAYA PENGURANGAN TIMBULAN SAMPAH PLASTIK,” vol. 5, no. 1, 2022.

L. Faizal, Y. Yuyun, and H. Hazriani, “Identifikasi Sampah Plastik Menggunakan Algoritma Deep Learning,” Jurnal Ilmiah Sistem Informasi dan Teknik Informatika (JISTI), vol. 6, no. 2, pp. 162–171, Oct. 2023, doi: 10.57093/jisti.v6i2.176.

F. Y. Raspati, “Deteksi Sampah Plastik Menggunakan Algoritma Yolov5 (You Only Look Once Version 5)”.

N. Rosanti, R. Latifah, S. Munir, and I. A. Q. Maududi, "Pengaruh Jarak Objek Citra pada Model Deteksi dan Klasifikasi Botol Plastik Menggunakan YOLO," Jurnal Teknologi Terpadu, vol. 10, no. 1, pp. 63-69, 2024,.

M. Maulidiansyah and Moh. A. Yaqin, “Deteksi Tumpukan Sampah dengan Metode You Only Look Once (YOLO),” TRILOGI: Jurnal Ilmu Teknologi, Kesehatan, dan Humaniora, vol. 4, no. 2, pp. 76–79, Aug. 2023, doi: 10.33650/trilogi.v4i2.6185.

D. Triyanto, M. Zidan, M. Wahyudi, L. Pujiastuti, U. Bina Sarana Informatika, and S. Antar Bangsa, “Pengembangan Sistem Deteksi Objek Botol Real-Time dengan YOLOv8 untuk Aplikasi Vision,” Journal Computer Science, vol. 3, no. 1, 2024.

U. Brawijaya, L. L. Fernando, and F. Utaminingrum, “Fakultas Ilmu Komputer Rancang Bangun Sistem Klasifikasi Sampah Menggunakan Yolov8 Berbasis Raspberry Pi 4,” 2024. [Online]. Available: http://j-ptiik.ub.ac.id

F. Z. S. Hi. Rauf, D. Handoko, I. S. Pradana, and D. Alifta, “Comparison of YOLOv3-Tiny and YOLOv4-Tiny in the Implementation Handgun, Shotgun, and Rifle Detection Using Raspberry Pi 4B,” Jurnal Elektronika dan Telekomunikasi, vol. 24, no. 1, p. 52, Aug. 2024, doi: 10.55981/jet.602.

J. Terven, D. M. Córdova-Esparza, and J. A. Romero-González, “A Comprehensive Review of YOLO Architectures in Computer Vision: From YOLOv1 to YOLOv8 and YOLO-NAS,” Dec. 01, 2023, Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/make5040083.

A. B. Asni, M. K. Waruni, T. Elektro, and F. Teknologi Industri Universitas Balikpapan Jln Pupuk Raya Gn Bahagia Balikpapan, “Penerapan Metode Yolo Object Detection V1 Terhadap Proses Pendeteksian Jenis Kendaraan Di Parkiran,” 2021.

I. W. Suartika, E. P. A. Y. Widjaya, and R. Soelaiman, “Klasifikasi Citra Menggunakan Convolution Neural Network (Cnn) pada Caltech 101,” Jurnal Teknik ITS, vol. 5, no. 1, pp. A65–A70, 2016..

R. Nirthika, S. Manivannan, A. Ramanan, and R. Wang, “Pooling in convolutional neural networks for medical image analysis: a survey and an empirical study,” Apr. 01, 2022, Springer Science and Business Media Deutschland GmbH. doi: 10.1007/s00521-022-06953-8.

R. Gelar Guntara, “Pemanfaatan Google Colab Untuk Aplikasi Pendeteksian Masker Wajah Menggunakan Algoritma Deep Learning YOLOv7,” Jurnal Teknologi Dan Sistem Informasi Bisnis, vol. 5, no. 1, pp. 55–60, Feb. 2023, doi: 10.47233/jteksis.v5i1.750.

Published
2025-01-16
How to Cite
Nur Santoso, U. R., & Gamar, F. (2025). Deteksi Sampah Botol Plastik di Perairan Menggunakan YOLO v4-Tiny. Jurnal Teknologi Dan Sistem Informasi Bisnis, 7(1), 91-98. https://doi.org/10.47233/jteksis.v7i1.1744
Section
Articles