Prediksi Harga Rumah menggunakan Machine Learning Algoritma Regresi Linier

  • rosalia roja hallan Mahasiswa Universitas Amikom Yogyakarta
  • Ika Nur Fajri Program Studi Sistem Informasi, Ilmu Komputer, Universitas Amikom Yogyakarta
Keywords: Keywords: Property price prediction, Linear Regression, StandardScaler, R-squared, Root Mean Squared Error, Machine learning

Abstract

The property sector plays a vital role in the global economy, especially regarding property price prediction, which is a complex challenge influenced by factors such as building size, number of rooms, location, and property condition. This study aims to build a property price prediction model using the Linear Regression algorithm. The data used in this research was obtained from Kaggle, consisting of 1460 data points on house prices in Ames, USA. The preprocessing phase includes handling missing data, outlier management, and feature standardization using StandardScaler to ensure data consistency. The linear regression model was trained and evaluated using R-squared (R²) and Root Mean Squared Error (RMSE) metrics. The evaluation results show an R² of 0.81, indicating the model explains 81% of the variation in house prices. Additionally, the RMSE value of 35,830.40 shows the model's relatively low and consistent error when tested with different data. Features such as overall house quality (OverallQual) and living area size (GrLivArea) significantly correlate with house prices. These findings demonstrate that linear regression is an effective tool for predicting property prices.

 

Downloads

Download data is not yet available.

References

R. Khoirudin and M. L. A. Kurniawan, ‘A time-varying of property residential price in Indonesia: a VAR approach’, Jurnal Ekonomi & Studi Pembangunan, vol. 24, no. 1, pp. 69–80, May 2023, doi: 10.18196/jesp.v24i1.17750.

Suharti, Yusrizal, and L. Eprianti, ‘Evaluasi Pengaruh Faktor Ekonomi Makro Terhadap Harga Saham Sektor Properti Yang Terdaftar Di BEI Periode 2017-2020’, Management Studies and Entrepreneurship Journal, vol. 4, no. 1, pp. 834–851, 2023.

B. Wisnuadhi, I. Setiawan, and P. Korespondensi, ‘REKOMENDASI FITUR YANG MEMPENGARUHI HARGA SEWA MENGGUNAKAN PENDEKATAN MACHINE LEARNING’, vol. 8, no. 4, pp. 673–682, 2021, doi: 10.25126/jtiik.202183305.

I. G. A. A. Putra, ‘Penentuan Nilai Pasar Properti Tanah Kosong di Kelurahan Kerobokan Kelod, Kabupaten Badung’, Jurnal Teknik Sipil, vol. 15, no. 1, pp. 48–53, 2023.

S. H. Hasanah and E. Julianti, ‘Analysis of CART and Random Forest on Statistics Student Status at Universitas Terbuka’, INTENSIF: Jurnal Ilmiah Penelitian dan Penerapan Teknologi Sistem Informasi, vol. 6, no. 1, pp. 56–65, Feb. 2022, doi: 10.29407/intensif.v6i1.16156.

M. Jason and D. Prayogo, ‘Prediksi Financial Distress Pada Perusahaan Terbuka di Sektor Konstruksi dan Properti yang Terdaftar di Bursa Efek Indonesia dengan Metode Integrasi Differential Evolution dan Least Squares Support Vector Machine’, Dimensi Utama Teknik Sipil, vol. 10, no. 1, pp. 77–85, Apr. 2023, doi: 10.9744/duts.10.1.77-85.

I. M. Faiza, Gunawan, and W. Andriani, ‘Tinjauan Pustaka Sistematis: Penerapan Metode Machine Learning untuk Deteksi Bencana Banjir’, Jurnal Minfo Polgan, vol. 11, no. 2, pp. 59–63, Dec. 2022, doi: 10.33299/jpkop.22.2.1752.

Anjar Setiawan, Ema Utami, and Dhani Ariatmanto, ‘Cattle Weight Estimation Using Linear Regression and Random Forest Regressor’, Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 8, no. 1, pp. 72–79, Feb. 2024, doi: 10.29207/resti.v8i1.5494.

L. Qodariah, M. Nurjihadi, E. Pembangunan, F. Ekonomi, D. Bisnis, and U. T. Sumbawa, ‘Pengaruh Sektor-Sektor Ekonomi Prioritas dan Variabel Demografis Terhadap Konsumsi Energi Listrik di Provinsi Nusa Tenggara Barat’, Journal of Macroeconomics and Social Development, no. 1, pp. 1–14, 2024, [Online]. Available: https://economics.pubmedia.id/index.php/jmsd

A. A. Kurniawan, M. Mustikasari, and P. Korespondensi, ‘EVALUASI KINERJA MLLIB APACHE SPARK PADA KLASIFIKASI BERITA PALSU DALAM BAHASA INDONESIA’, Jurnal Teknologi Informasi dan Ilmu Komputer (JTIIK), vol. 9, no. 3, 2022, doi: 10.25126/jtiik.202293538.

R. Martha and D. E. Herwindiati, ‘Prediksi Hujan Menggunakan Metode Artificial Neural Network, K-Nearest Neighbors, dan Naïve Bayes’, Jurnal Teknologi Dan Sistem Informasi Bisnis, vol. 6, no. 4, pp. 859–865, Nov. 2024, doi: 10.47233/jteksis.v6i4.1650.

Hermansyah, A. Abdullah, and P. Y. Utami, ‘Penerapan Metode Regresi Linier Berganda Untuk Memprediksi Panen Kelapa Sawit’, Progresif: Jurnal Ilmiah Komputer, vol. 20, no. 1, pp. 540–554, 2024.

E. Wibowo and I. Pratama, ‘Analisis Sentimen Terhadap Ulasan Hotel Melalui Platform Google Review Menggunakan Metode Stacking’, Jurnal Teknologi Dan Sistem Informasi Bisnis, vol. 6, no. 4, pp. 774–784, Oct. 2024, doi: 10.47233/jteksis.v6i4.1475.

S. Karbala, I. A. Program, S. Komputerisasi, A. D3, and F. T. Industri, ‘MEMPREDIKSI HARGA BERAS ECERAN MENGGUNAKAN ALGORITMA REGRESI LINIER’, Jurnal Mahasiswa Teknik Informatika, vol. 7, no. 3, 2023.

N. Nuris, ‘Analisis Prediksi Harga Rumah Pada Machine Learning Metode Regresi Linear’, EXPLORE, vol. 14, no. 2, pp. 108–112, 2024.

M. Adha, E. Utami, and Hanafi, ‘Model Hibrid Algoritma Apriori dan Regresi Linear untuk Perkiraan Produksi Jagung (Studi Kasus : Kabupaten Dompu)’, JEPIN (Jurnal Edukasi dan Penelitian Informatika) , vol. 8, no. 3, pp. 441–450, 2022.

D. Permata Sari, R. Bayu Putra, H. Fitri, A. Ramadhanu, and F. Cahyani Putri, ‘PENGARUH PEMAHAMAN PAJAK, PELAYANAN APARAT PAJAK, SANKSI PERPAJAKAN DAN PREFERENSI RISIKO PERPAJAKAN TERHADAP KEPATUHAN WAJIB PAJAK( STUDI KASUS UMKM TOKO ELEKTRONIK DI KECAMATAN SITIUNG DHARMASRAYA)’, Jurnal Teknologi Dan Sistem Informasi Bisnis, vol. 1, no. 2, pp. 18–22, Jul. 2019, doi: 10.47233/jteksis.v1i2.46.

A. R. M. Togatorop, A. I. L. Bahari, and A. Choiruddin, ‘Neural Networks-Based Forecasting Platform for EV Battery Commodity Price Prediction’, INTENSIF: Jurnal Ilmiah Penelitian dan Penerapan Teknologi Sistem Informasi, vol. 7, no. 2, pp. 243–261, Aug. 2023, doi: 10.29407/intensif.v7i2.19999.

T. Nurmansyah, R. Kurniawan, Y. A. Wijaya, P. Studi, T. Informatika, and I. Cirebon, ‘Analisis Data Stok Alat Kesehatan menggunakan Metode Regresi Linier Berdasarkan Nilai RMSE’, vol. 6, no. 1, pp. 177–182, 2024.

M. Sholeh, Suraya, and D. Andayati, ‘Machine Linear untuk Analisis Regresi Linier Biaya Asuransi Kesehatan dengan Menggunakan Python Jupyter Notebook’, JEPIN (Jurnal Edukasi dan Penelitian Informatika) , vol. 8, no. 1, pp. 20–27, 2022, [Online]. Available: www.data.jakarta.go.id.

Published
2025-01-07
How to Cite
hallan, rosalia, & Fajri, I. N. (2025). Prediksi Harga Rumah menggunakan Machine Learning Algoritma Regresi Linier. Jurnal Teknologi Dan Sistem Informasi Bisnis, 7(1), 57-62. https://doi.org/10.47233/jteksis.v7i1.1732
Section
Articles