Hospital Clustering Based on Patient Visits Using the K-Means Algorithm: Data 2019-2023

  • Liga Mayola UPI YPTK Padang
  • M. Hafizh Teknik Informatika, Fakultas Ilmu Komputer, Universitas Putra Indonesia YPTK Padang
  • Hadi Syahputra Teknik Informatika, Fakultas Ilmu Komputer, Universitas Putra Indonesia YPTK Padang
Keywords: Data Mining, K-Means, Clustering, Patient Visits

Abstract

Hospitals play a vital role in providing healthcare services to the community. Every day, patients visit hospitals to receive medical care. Over time, patient visit data continues to grow, resulting in a massive accumulation of data. This large volume of patient visit data can be clustered using data mining algorithms, providing strategic insights for resource management, facility planning, and improving the quality of healthcare services. The purpose of this study is to classify hospitals based on the number of patient visits over the past five years. The clustering process was conducted using the K-Means Clustering Algorithm. The research data was obtained from the Satu Data Sumbar website. Hospital patient visit data was grouped into three clusters. The results indicate that Cluster 1 (K1) represents hospitals with very high visit intensity, Cluster 2 (K2) represents hospitals with medium visit levels, and Cluster 3 (K3) represents hospitals with low visit levels.

Keywords: 

Downloads

Download data is not yet available.

References

Di. P. Mulya, “Analisa Dan Implementasi Association Rule Dengan Algoritma Fp-Growth Dalam Seleksi Pembelian Tanah Liat (Studi Kasus Di Pt. Anveve Ismi Berjaya),” J. Teknol. Dan Sist. Inf. Bisnis, vol. 1, no. 1, hal. 47–57, 2019, doi: 10.47233/jteksis.v1i1.6.

S. Maulia, B. S. Ginting, dan A. Sihombing, “Implementasi Data Mining Pengelompokan Jenis Penyakit Pasien Menggunakan Metode Clustering (Studi Kasus : Puskesmas Sambirejo),” J. Inform. Kaputama, vol. 5, no. 1, hal. 71–80, 2021, doi: 10.59697/jik.v5i1.304.

M. Faizal Rizqi, M. Martanto, dan U. Hayati, “Clustering Kunjungan Pasien Menggunakan Algoritma K-Means Pada Rumah Sakit Di Wilayah Bekasi,” JATI (Jurnal Mhs. Tek. Inform., vol. 8, no. 1, hal. 230–237, 2024, doi: 10.36040/jati.v8i1.8327.

& J. O. H. S.Loi, S.W. Hulu, H. Halawa, “Implementasi Algoritma K-Means Clustering Untuk Pengelompokkan Penyakit Pasien Pada Puskesmas Pulo Brayan,” Sains dan Teknol., vol. 5, no. 1, hal. 150–157, 2023.

S. F. Munawar, A. Nasution, “Pengelompokan Wilayah Berdasarkan Kubik Air menggunakan Algoritma K-Means pada Perumda Air Minum Tirta Silaupiasa Kabupaten Asahan Regional Grouping Based on Cubic Water Using K - Means Algorithm at,” vol. 13, hal. 789–801, 2024.

I. Kanedi dan E. Suryana, “Penerapan Metode K-Means Clustering Dalam Pengelompokan Data Pasien Rawat Inap Peserta BPJS Di Rumah Sakit Umum Daerah Kabupaten Kaur,” vol. 20, no. 2, hal. 493–500, 2024.

R. Maulidina dan S. Y. Riska, “Application of the K-Means Algorithm for Clustering Plantation Crop Production in Indonesia,” Smatika J., vol. 13, no. 02, hal. 339–349, 2023, doi: 10.32664/smatika.v13i02.991.

K. P. Sinaga dan M. S. Yang, “Unsupervised K-means clustering algorithm,” IEEE Access, vol. 8, hal. 80716–80727, 2020, doi: 10.1109/ACCESS.2020.2988796.

A. Lingga, “Penerapan Algoritma K-Means Clustering Untuk Klasterisasi Penyakit Pasien,” vol. 1, no. 3, hal. 93–102, 2024.

Mohamad Fahmi Hafidz dan Sri Lestari, “Solution to Scalability and Sparsity Problems in Collaborative Filtering using K-Means Clustering and Weight Point Rank (WP-Rank),” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 7, no. 4, hal. 743–750, 2023, doi: 10.29207/resti.v7i4.4543.

N. N. Hasanah dan A. S. Purnomo, “Implementasi Data Mining Untuk Pengelompokan Buku Menggunakan Algoritma K-Means Clustering (Studi Kasus : Perpustakaan Politeknik LPP Yogyakarta),” J. Teknol. Dan Sist. Inf. Bisnis, vol. 4, no. 2, hal. 300–311, 2022, doi: 10.47233/jteksis.v4i2.499.

A. Naufal, M. Fadhil, dan . W., “Clustering and Financial Performance Analysis of Indonesian Coal Mining Industry Stock Prices,” J. Teknol. Dan Sist. Inf. Bisnis, vol. 6, no. 1, hal. 20–28, 2024, doi: 10.47233/jteksis.v6i1.1081.

Ajeng Arifa Chantika Rindu, Ria Astriratma, dan Ati Zaidiah, “K-Means Algorithm Implementation for Project Health Clustering,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 7, no. 5, hal. 1064–1076, 2023, doi: 10.29207/resti.v7i5.5181.

Haris Kurniawan, Sarjon Defit, dan Sumijan, “Data Mining Menggunakan Metode K-Means Clustering Untuk Menentukan Besaran Uang Kuliah Tunggal,” J. Appl. Comput. Sci. Technol., vol. 1, no. 2, hal. 80–89, 2020, doi: 10.52158/jacost.v1i2.102.

I. Rizky Mahartika dan A. Wibowo, “Data Mining Klasterisasi dengan Algoritme K-Means untuk Pengelompokkan Provinsi Berdasarkan Konsumsi Bahan Bakar Minyak Nasional,” Semin. Nas. Sist. Inf. dan Teknol., vol. 3, no. 1, hal. 87–91, 2019.

Published
2025-01-04
How to Cite
Mayola, L., Hafizh, M., & Syahputra, H. (2025). Hospital Clustering Based on Patient Visits Using the K-Means Algorithm: Data 2019-2023. Jurnal Teknologi Dan Sistem Informasi Bisnis, 7(1), 15-21. https://doi.org/10.47233/jteksis.v7i1.1703
Section
Articles