Perbandingan Algoritma K-NN, SVM, dan Decision Tree dalam Klasifikasi Kelenjar Tiroid

  • Angel Angel Teknik Informatika, Teknologi Informasi, Universitas Tarumanagara,
  • Dyah Erny Herwindiati Teknik Informatika, Teknologi Informasi, Universitas Tarumanagara,

Abstract

Thyroid disorders are a disease that is dif icult and often misdiagnosed. This is what causes many people to find out too late that they have this thyroid disorder. There are two types of thyroid disorders, namely hyperthyroidism and hypothyroidism. Machine Learning can be utilized to classify these disorders using data mining techniques. Classification is often used to predict many diseases, one of which is thyroid. The aim of this research was to determine the classification of the patient's thyroid. The data used is patient data sourced from Kaggle with 31 features (x) and 3 classes (y), namely 'Negative', 'Hypothyroid' and 'Hyperthyroid'. The data in this study was modeled using the Support Vector Machine (SVM) method with Radial Basis Function (RBF), K-Nearest Neighbor (KNN) and Decision Tree kernels. The results obtained are the percentage accuracy of each algorithm which is 97%, 92% and 91% respectively. From these results it can be concluded that the Support Vector Machine (SVM) algorithm is most suitable to be implemented with this dataset.

Downloads

Download data is not yet available.

References

R. S. Tantika, "Penggunaan Metode Support Vector Machine Klasifikasi Multiclass pada Data Pasien Penyakit Tiroid.," Bandung Conference Series: Statistics, vol. II, no. 2, pp. 159-166, 2022.

S. J. Putri, A. Pratama and Q. Attaqwa, "Perbandingan Kinerja Algoritma Naïve Bayes Dan K-Nearest Neighbors (KNN) Dalam Memprediksi Penyakit Tiroid," Prosiding Sains dan Teknologi, vol. II, pp. 563-569, 2023.

A. Cahyandani, "PESAN PERSUASIF" PERIKSA LEHER ANDA" PADA INSTAGRAM@ PITATOSCA DAN PERILAKU DETEKSI DINI GANGGUAN TIROID ANGGOTA KOMUNITAS PITA TOSCA," PESAN PERSUASIF" PERIKSA LEHER ANDA" PADA INSTAGRAM@ PITATOSCA DAN PERILAKU DETEKSI DINI GANGGUAN TIROID ANGGOTA KOMUNITAS PITA TOSCA, 2021.

A. Roihan, P. A. Sunarya and A. S. Rafika, "Pemanfaatan Machine Learning dalam Berbagai Bidang," Jurnal Khatulistiwa Informatika, vol. V, no. 1, 2020.

A. P. Wibawa, M. Guntur, A. Purnama, M. F. Akbar and F. A. Dwiyanto, "Metode-metode klasifikasi," Prosiding Seminar Ilmu Komputer dan Teknologi Informasi, vol. III, no. 1, 2018.

E. Sonuç, "Thyroid disease classification using machine learning algorithms," Thyroid disease classification using machine learning algorithms, vol. MCMLXIII, no. 1, 2021.

H. Yang, "Data preprocessing," Pennsylvania State University: Citeseer, 2018.

K. Dharmarajan, K. Balasree, A. S. Arunachalam and K. Abirmai, "Thyroid disease classification using decision tree and SVM," Indian Journal of Public Health Research & Development, vol. XI, no. 3, pp. 224-229, 2020.

T. M. P. Aulia, N. Arifin and R. Mayasari, "Perbandingan Kernel Support Vector Machine (Svm) Dalam Penerapan Analisis Sentimen Vaksinisasi Covid-19," SINTECH (Science and Information Technology), vol. IV, no. 2, pp. 139-145, 2021.

F. Liantoni and A. Santoso, "Perbaikan Kontras Citra Mammogram Pada Klasifikasi Kanker Payudara Berdasarkan Fitur Gray-Level-Co-Occurrence Matrix," Science And Information Technology Journal, no. 3, pp. 26-51, 2020.

R. W. Pratiwi, D. Dairoh and D. I. Af’idah, "Analisis Sentimen Pada Review Skincare Female Daily Menggunakan Metode Support Vector Machine (SVM)," INISTA (Journal of Informatics Information System Software Engineering and Applications), vol. IV, no. 1, pp. 40-46, 2021

D. Umar Sidiq, S. M. Aaqib and R. A. & Khan, "Diagnosis of various thyroid ailments using data mining classification techniques," Int J Sci Res Coput Sci Inf Technol, vol. V, 2019.

A. Tyagi, R. Mehra and A. Saxena, "Interactive thyroid disease prediction system using machine learning technique," 2018 Fifth international conference on parallel, distributed and grid computing (PDGC), pp. 689-693, 2018.

A. Adriyendi and Y. Melia, “Klasifikasi Menggunakan Naïve Bayes Dan K-Nearest Neighbor Pada Manajemen Layanan Teknologi Informasi”, JTEKSIS, vol. 2, no. 2, pp. 99-107, Jul. 2020.

W. P. Hidayanti, "Penerapan Algoritma K-Nearest Neighbor Untuk Klasifikasi Efektivitas Penjualan Vape (Rokok Elektrik) pada †œLombok Vape Onâ€.," nfotek: Jurnal Informatika dan Teknologi, vol. III, no. 2, pp. 104-114, 2020.

Azis, A., Zy, A. T., & Sunge, A. S. (2024). Prediksi Penjualan Obat Dan Alat Kesehatan Terlaris Menggunakan Algoritma K-Nearest Neighbor. Jurnal Teknologi Dan Sistem Informasi Bisnis, 6(1), 117-124.

T. Alyas, M. Hamid, K. Alissa, T. Faiz, N. Tabassum and A. Ahmad, "Empirical method for thyroid disease classification using a machine learning approach," BioMed Research International, 2022..

D. Normawati and S. A. Prayogi, "implementasi Naïve Bayes Classifier Dan Confusion Matrix Pada Analisis Sentimen Berbasis Teks Pada Twitter," J-SAKTI (Jurnal Sains Komputer Dan Informatika), vol. V, no. 2, pp. 697-711, 2021.

R. Rachmatika and A. Bisri, "Perbandingan Model Klasifikasi untuk Evaluasi Kinerja Akademik Mahasiswa," JEPIN (Jurnal Edukasi dan Penelitian Informatika), vol. VI, no. 3, pp. 417-422, 2020.

A. Devia and B. Soewito, “Comparison of Feature Selection Methods for Anomaly Detection on the CIC-IDS-2018 Dataset”, JTEKSIS, vol. 5, no. 4, pp. 572-578, Nov. 2023.

Published
2024-11-06
How to Cite
Angel, A., & Herwindiati, D. (2024). Perbandingan Algoritma K-NN, SVM, dan Decision Tree dalam Klasifikasi Kelenjar Tiroid. Jurnal Teknologi Dan Sistem Informasi Bisnis, 6(4), 866-871. https://doi.org/10.47233/jteksis.v6i4.1651
Section
Articles