Sentiment Analysis of the Digital Population Identity Application Reviews Using the Support Vector Machine Method

  • M Ioni Abdurrahman Guno Wibowo Universitas Mercu Buana Yogyakarta
  • Irfan Pratama Universitas Mercu Buana Yogyakarta
Keywords: CRISP-DM, ISO 9126, LEXICON, SENTIMENT, SUPPORT VECTOR MACHINE

Abstract

Digital Population Identity Application, developed by the Directorate General of Civil Registration of the Ministry of Home Affairs, Indonesia, represents a digitalization initiative for population documents including electronic ID cards (KTP-el), Family Cards, Covid-19 vaccination certificates, tax identification numbers (NPWP), vehicle ownership information, National Civil Service Agency (BKN) data, social security (BPJS), national socioeconomic data (DTKS), and voter lists. Sentiment analysis is crucial to understand user feedback on the application. This study aims to analyze user sentiment toward the Digital Population Identity Application on Google Play Store, categorize sentiments using ISO 9126 standards, and evaluate accuracy using Support Vector Machine (SVM) algorithms within the framework of the Cross-Industry Standard Process for Data Mining (CRISP-DM). Research findings indicate positive sentiment from users toward the Digital Population Identity Application, with a primary focus on application functionality in positive reviews. SVM models trained using lexicon-based labeling achieved an accuracy of 80%, while models trained with ISO 9126 labeling achieved 84% accuracy. The conclusion of this study is that the Digital Population Identity Application is well-received by users, providing valuable guidance for developers to improve the quality and future development of the application.

Downloads

Download data is not yet available.

References

A. Nurrahman, M. Dimas, M. F. Ma’sum, and M. F. Ino, “Pemanfaatan Website Sebagai Bentuk Digitalisasi Pelayanan Publik Di Kabupaten Garut,” J. Teknol. dan Komun. Pemerintah., vol. 3, no. 1, pp. 78–95, 2021, doi: 10.33701/jtkp.v3i1.2126.

Dukcapiladmin, “Identitas Kependudukan Digital (IKD) / Digital ID,” dukcapil.madiunkab.go.id, 2023. https://dukcapil.madiunkab.go.id/identitas-kependudukan-digital-digital-id/ (accessed Mar. 27, 2023).

M. R. Fahlevvi, “Analisis Sentimen Terhadap Ulasan Aplikasi Pejabat Pengelola Informasi Dan Dokumentasi Kementerian Dalam Negeri Republik Indonesia Di Google Playstore Menggunakan Metode Support Vector Machine,” J. Teknol. dan Komun. Pemerintah., vol. 4, no. 1, pp. 1–13, 2022, doi: 10.33701/jtkp.v4i1.2701.

M. Mauludin Rohman and S. Adinugroho, “Analisis Sentimen pada Ulasan Aplikasi Mobile JKN Menggunakan Metode Maximum Entropy dan Seleksi Fitur Gini Index Text,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 5, no. 6, pp. 2646–2654, 2021.

T. Tinaliah and T. Elizabeth, “Analisis Sentimen Ulasan Aplikasi PrimaKu Menggunakan Metode Support Vector Machine,” JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 9, no. 4, pp. 3436–3442, 2022, doi: 10.35957/jatisi.v9i4.3586.

R. Wahyudi and G. Kusumawardana, “Analisis Sentimen pada Aplikasi Grab di Google Play Store Menggunakan Support Vector Machine,” J. Inform., vol. 8, no. 2, pp. 200–207, 2021, doi: 10.31294/ji.v8i2.9681.

A. Rohanah, B. A. Dermawan, and I. Purnamasari, “Klasifikasi Ulasan Pengguna Zoom Cloud Meetings Menggunakan Metode Information Gain dan Naïve Bayes Classifier,” J. Inform. Univ. Pamulang, vol. 6, no. 2, pp. 348–357, 2021.

S. Supriyono, “Penerapan ISO 9126 Dalam Pengujian Kualitas Perangkat Lunak pada E-book,” Matics, vol. 11, no. 1, p. 9, 2019, doi: 10.18860/mat.v11i1.7672.

R. H. Muhammadi, T. G. Laksana, and A. B. Arifa, “Combination of Support Vector Machine and Lexicon-Based Algorithm in Twitter Sentiment Analysis,” Khazanah Inform. J. Ilmu Komput. dan Inform., vol. 8, no. 1, pp. 59–71, 2022, doi: 10.23917/khif.v8i1.15213.

Y. Umaidah and Purwantaro, “Penerapan Algoritma K-Nearest Neighbor (KNN) dengan Pencarian Optimal untuk Prediksi Siswa Berprestasi,” JISICOM (Journal Inf. Syst. Informatics Comput. ), vol. 3, no. 2, pp. 1–8, 2019.

T. Wurijanto, H. B. Setiawan, and ..., “Penerapan Model CRISP-DM pada Prediksi Nasabah Kredit yang Berisiko Menggunakan Algoritma Support Vector Machine,” J. Ilm. Scroll …, vol. 10, 2022.

R. Rousyati, W. Gata, D. Pratmanto, and N. K. Wardhani, “Analisa Sentimen Financial Technology Peer To Peer Lending Pada Aplikasi Koinworks,” J. Teknol. Inf. dan Ilmu Komput., vol. 9, no. 6, pp. 1167–1176, 2022, doi: 10.25126/jtiik.2022964409.

Noprianto, “Evaluasi Kualitas Website Dinas Perpustakaan dan Arsip Provinsi Kalimantan Tengah berdasarkan ISO/IEC 9126,” p. 96, 2021.

R. Musfikar, L. Rozana, H. Hazrullah, and R. Islamadina, “Pengukuran Kualitas Aplikasi E-Surat Menggunakan ISO 9126,” Circuit J. Ilm. Pendidik. Tek. Elektro, vol. 7, no. 1, p. 30, 2023, doi: 10.22373/crc.v7i2.14917.

L. E. Pradana and Y. Ruldeviyani, “Sentiment Analysis of Nanovest Investment Application Using Naive Bayes Algorithm,” J. Nas. Pendidik. Tek. Inform., vol. 12, no. 2, pp. 283–293, 2023, doi: 10.23887/janapati.v12i2.62302.

M. D. Hendriyanto, A. A. Ridha, and U. Enri, “Analisis Sentimen Ulasan Aplikasi Mola Pada Google Play Store Menggunakan Algoritma Support Vector Machine,” INTECOMS J. Inf. Technol. Comput. Sci., vol. 5, no. 1, pp. 1–7, 2022, doi: 10.31539/intecoms.v5i1.3708.

M. R. Nadhif, D. Wisnu Brata, and B. Rahayudi, “Analisis Sentimen Data Ulasan Pengguna Aplikasi TIX ID di Indonesia pada Google Play Store menggunakan Support Vector Machine,” vol. 6, no. 8, pp. 3932–3937, 2022.

F. M. Akbar, R. Hermansyah, S. Lusa, D. I. Sensuse, and N. Safitri, “ANALISIS SENTIMEN UNTUK EVALUASI REPUTASI MEREK MOTOR XYZ BERKAITAN DENGAN ISU RANGKA MOTOR DI TWITTER MENGGUNAKAN SENTIMENT ANALYSIS FOR EVALUATING THE REPUTATION OF XYZ MOTOR BRAND RELATED TO FRAME ISSUE ON TWITTER USING MACHINE LEARNING,” vol. 11, no. 3, pp. 647–654, 2024, doi: 10.25126/jtiik2024118663.

Y. Asri, W. N. Suliyanti, D. Kuswardani, and M. Fajri, “Pelabelan Otomatis Lexicon Vader dan Klasifikasi Naive Bayes dalam menganalisis sentimen data ulasan PLN Mobile,” Petir, vol. 15, no. 2, pp. 264–275, 2022, doi: 10.33322/petir.v15i2.1733.

T. N. Sari, “Analisis Kualitas Dan Pengembangan Sistem Informasi Akademik Berbasis Web Menggunakan Standard Iso 9126,” JIKO (Jurnal Inform. dan Komputer), vol. 1, no. 1, pp. 1–7, 2016, doi: 10.26798/jiko.2016.v1i1.15.

V. No, J. Hal, A. Yuanita, M. Yusril, and H. Setyawan, “Analisis Sentimen Aplikasi Pospay di PlayStore Menggunakan Algoritma Support Vector Machine & Naive Bayes,” vol. 6, no. 3, pp. 514–521, 2024.

F. Pradana, F. A. Bachtiar, and M. Zulfikarrahman, “Implementasi Support Vector Machine untuk Deteksi Stres pada Pengguna E-Learning,” J. Teknol. Inf. dan Ilmu Komput., vol. 8, no. 4, pp. 763–768, 2021, doi: 10.25126/jtiik.2021844371.

Published
2024-10-02
How to Cite
Guno Wibowo, M., & Pratama, I. (2024). Sentiment Analysis of the Digital Population Identity Application Reviews Using the Support Vector Machine Method. Jurnal Teknologi Dan Sistem Informasi Bisnis, 6(4), 715-722. https://doi.org/10.47233/jteksis.v6i4.1552
Section
Articles