Implementasi Metode Collaborative Filtering By Item Based Approach Untuk Strategi Digital Tourism

Abstract
West Sumatra is one of the cities in Indonesia that has many tourist attractions. Tourist attractions are one of the entertainment for people in Indonesia, especially West Sumatra. Provinces that are rich in natural, cultural and artificial tourism are able to give a comfortable impression to tourists visiting this area. In addition to its tourist attractions, the natives of West Sumatra are also kind and friendly to tourists on vacation. In choosing a tourist spot, there are some tourists who look for tours according to their wishes. However, sometimes they get incomplete information about the tour they want. With the rapid development of technology, a system is needed that can help provide information and recommend tourist attractions to tourists. With this system, it is expected to help provide the information desired by users later. This recommendation system uses the Collaborative Filtering method with an item-based approach. The recommendation process in this system is done by calculating Similarity between specifications that make up an item of tourist attractions that users want with the specifications of tourist attractions contained in the system. This system produces recommendations for tourist attractions with information about tourism in West Sumatra, and can provide solutions for tourists in choosing a place of tourism that suits their desires.
Downloads
References
J. Abbas, R. Mubeen, P. T. Iorember, S. Raza, and G. Mamirkulova, “Exploring the impact of COVID-19 on tourism: transformational potential and implications for a sustainable recovery of the travel and leisure industry,” Current Research in Behavioral Sciences, vol. 2, p. 100033, Nov. 2021, doi: 10.1016/j.crbeha.2021.100033.
Kementrian Luar Negri Republik Indonesia, “Pariwisata Indonesia Pasca Pandemi, Pemulihan Pasar, dan Kerja Sama dengan Kawasan Amerika: Perlunya Konsolidasi Nasional.” 2021.
R. Nasruddin and I. Haq, “Pembatasan Sosial Berskala Besar (PSBB) dan Masyarakat Berpenghasilan Rendah,” SJSBS, vol. 7, no. 7, May 2020, doi: 10.15408/sjsbs.v7i7.15569.
“NERACA_SATELIT_PARIWISATA_DAERAH_PROVINSI_SUMBAR_compressed.pdf.”
BPS Sumatera Barat, Provinsi Sumatera Barat Dalam Agka 2023. 2022.
F. R. Khoir, A. A. Subandri, F. N. Alanshori, Z. M. H. Solihah, M. Munawir, and A. S. Perdana, “Perencanaan Rute Optimal Kunjungan Destinasi Wisata Bandung dengan Algoritma Dijkstra Pada C++,” JTEKSIS, vol. 6, no. 2, pp. 275–281, Apr. 2024, doi: 10.47233/jteksis.v6i2.1167.
R. Astri, “SISTEM INFORMASI E-TOURISM SEBAGAI SARANA PROMOSI PARIWISATA KOTA PADANG”.
R. Astri, F. Faradika, M. R. A, and A. Kamal, “Digital Management of Micro, Small and Medium Enterprises (MSME) Activities Based on the Unified Approach,” SJI, vol. 8, no. 2, pp. 258–267, Nov. 2021, doi: 10.15294/sji.v8i2.29339.
A. Rovylendes, A. Arnailis, Y. Yusnelli, M. Murniati, F. Herdianto, and N. Nofridayati, “Promotion of West Sumatra Tourism in the Creative Industry and Its Strategic Value in the Language of Promotion,” RNH, vol. 12, no. 1, p. 113, Jun. 2023, doi: 10.26499/rnh.v12i1.5839.
E. P. E. Putri and H. Februariyanti, “SISTEM REKOMENDASI TEMPAT WISATA KOTA PADANG DENGAN HAVERSINE,” Proceeding SENDIU, 2020.
F. Faradika, R. Astri, and Z. Zulfahmi, “Sistem Informasi Penjadwalan Otomatis Media Sosial Instagram Untuk Mendukung Promosi Program Studi Di Universitas Dharma Andalas,” JTEKSIS, vol. 2, no. 2, pp. 225–230, Jul. 2020, doi: 10.47233/jteksis.v2i2.149.
R. Astri and A. Kamal, “IT-Dashboard Application To Determine The Type Of Subsidized Assistance,” Jurnal Ipteks Terapan, vol. 17, no. 3, pp. 703–709, 2023.
R. Astri, L. Po Hung, S. Binti Sura, A. Kamal, and R. Yuliet, “Sentiment analysis using naive bayes for reviews of visitors to Padang City beach tourism after the COVID-19 pandemic,” E3S Web Conf., vol. 464, p. 06002, 2023, doi: 10.1051/e3sconf/202346406002.
R. Astri, A. Kamal, and S. B. Sura, “Coffee Shop Recommendation System Using an Item-Based Collaborative Filtering Approach,” in 2022 International Symposium on Information Technology and Digital Innovation (ISITDI), Padang, Indonesia: IEEE, Jul. 2022, pp. 65–67. doi: 10.1109/ISITDI55734.2022.9944403.
P. A. Manjare, P. V. Ninawae, M. L. Dabhire, R. S. Bonde, D. S. Charhate, and M. S. Gawande, “Recommendation System Based on Tourist Attraction,” International Research Journal of Engineering and Technology (IRJET), vol. 3, no. 4, pp. 877–881, Apr. 2016.
D. Massimo and Ricci, “Building effective recommender systems for tourists,” AI Magazine, vol. 43, pp. 209–224, 2022.
K. Kesorn, W. Juraphanthong, and A. Salaiwarakul, “Personalized Attraction Recommendation System for Tourists Through Check-In Data,” IEEE Access, vol. 5, pp. 26703–26721, 2017, doi: 10.1109/ACCESS.2017.2778293.
R. Astri, A. Kamal, and S. B. Sura, “Coffee Shop Recommendation System Using an Item-Based Collaborative Filtering Approach,” in 2022 International Symposium on Information Technology and Digital Innovation (ISITDI), Padang, Indonesia: IEEE, Jul. 2022, pp. 65–67. doi: 10.1109/ISITDI55734.2022.9944403.
K. M. K. Chendur, V. Priya, R. M. Priya, and S. L. Lakshmi, “Book Recommender System using Improved Collaborative Filtering,” IJRESM, International Journal of Research in Engineering Science and Management, vol. 4, no. 4, pp. 51–56, 2021.
Z. Fayyaz, M. Ebrahimian, D. Nawara, A. Ibrahim, and R. Kashef, “Recommendation Systems: Algorithms, Challenges, Metrics, and Business Opportunities,” Applied Sciences, vol. 10, Nov. 2020.
F. O. Isinkaye, Y. O. Folajimi, and B. A. Ojokoh, “Recommendation systems: Principles, methods and evaluation,” Egyptian Informatics Journal, vol. 16, no. 13, pp. 261–273, Nov. 2015.
N. Azizah, “DESAIN PEMBELAJARAN ADDIE (ANALYSIS, DESIGN, DEVELOPMENT, IMPLEMENTATION, AND EVALUATION) E-LEARNING PADA MATERI SEJARAH KEBUDAYAAN ISLAM,” Jurnal Pendidikan Islam.
A. Kamal and R. Astri, “Implementasi Unified Approach Methode Pada Transaksi Penyewaan Freezer CV. BDR Padang,” Jurnal Teknologi Dan Sistem Informasi Bisnis, vol. 1, no. 1, pp. 74–80, 2019.

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under an Attribution 4.0 International (CC BY 4.0) that allows others to share — copy and redistribute the material in any medium or format and adapt — remix, transform, and build upon the material for any purpose, even commercially with an acknowledgment of the work's authorship and initial publication in this journal.