Peningkatan Ikatan Adhesi terhadap Pengurangan Retak Lapisan PVA pada Ti-6Al-4V ELI untuk Aplikasi Biomedis
Abstract
The lack of adhesion bonding of the hydroxyapatite (HA) coating layer on the surface of implant material can cause the coating layer to peel off during implantation and will increase the risk of metallic ion release to human body and may also to increase inflammatory effect and slow down the osseointegration process. In order to increase the adhesion of HA coated Ti-6Al-4V ELI by adding Zirconium Oxide (ZrO2) into the coating layer.The coating process of the HA suspension with addition ZrO2 into Ti-6Al-4V ELI sample surfaces was conducted by using dip-coating method. The samples were then heated at 800, 900, and 950 °C. The improvement of adhesion coating was correlated by calculating the removed area. The low value of removed coating area indicated the adhesion coating is good. The test specimen with the addition of ZrO2, has a removed area fewer than the test specimen without the addition of PVA- ZrO2 has. This shows that the test specimen with the addition of ZrO2 has good coating adhesion.The addition of PVA- ZrO2 to the HA suspension increases adhesion bonding of the coating layer, as indicated by the low removed area as compared to that of without PVA- ZrO2 coating.
Downloads
References
Saleh MM, Saleh MM, Touny AH, Al-Omair MA. Biodegradable/biocompatible coated metal implants for orthopedic applications. Biomed Mater Eng 2016;27:87–99. https://doi.org/10.3233/BME-161568.
Albayrak O, El-Atwani O, Altintas S. Hydroxyapatite coating on titanium substrate by electrophoretic deposition method: Effects of titanium dioxide inner layer on adhesion strength and hydroxyapatite decomposition. Surf Coatings Technol 2008;202:2482–7. https://doi.org/10.1016/j.surfcoat.2007.09.031.
Mohseni E, Zalnezhad E, Bushroa AR. Comparative investigation on the adhesion of hydroxyapatite coating on Ti-6Al-4V implant: A review paper. Int J Adhes Adhes 2014;48:238–57. https://doi.org/10.1016/j.ijadhadh.2013.09.030.
Gunawarman, Affi J, Sutanto A, Putri DM, Juliadmi D, Nuswantoro NF, et al. Adhesion Strength of Hydroxyapatite Coating on Titanium Alloy (Ti-6Al-4V ELI) for Biomedical Application. IOP Conf. Ser. Mater. Sci. Eng., vol. 1062, 2021. https://doi.org/10.1088/1757-899X/1062/1/012031.
Drevet R, Ben Jaber N, Fauré J, Tara A, Ben Cheikh Larbi A, Benhayoune H. Electrophoretic deposition (EPD) of nano-hydroxyapatite coatings with improved mechanical properties on prosthetic Ti6Al4V substrates. Surf Coatings Technol 2016;301:94–9. https://doi.org/10.1016/j.surfcoat.2015.12.058.
Xia W, Fu L, Engqvist H. Critical cracking thickness of calcium phosphates biomimetic coating: Verification via a Singh-Tirumkudulu model. Ceram Int 2017;43:15729–34. https://doi.org/10.1016/j.ceramint.2017.08.134.
Guraksin GE, Bicer EC, Evcin A. Characterization of Hydroxyapatite Coating on Ti6Al4V by Sol-gel Method. vol. 4. 2018. https://doi.org/10.22399/IJCESEN.379088.
Peron M, Torgersen J, Berto F. Effect of Zirconia ALD coating on stress corrosion cracking of AZ31 alloy in simulated body fluid. Procedia Struct. Integr., vol. 18, Elsevier B.V.; 2019, p. 538–48. https://doi.org/10.1016/j.prostr.2019.08.198.
Jemat A, Ghazali MJ, Razali M, Otsuka Y, Rajabi A. Effects of TiO2 on microstructural, mechanical properties and in-vitro bioactivity of plasma sprayed yttria stabilised zirconia coatings for dental application. Ceram Int 2018;44:4271–81. https://doi.org/10.1016/j.ceramint.2017.12.008.
Domínguez-Trujillo C, Ternero F, Rodríguez-Ortiz JA, Heise S, Boccaccini AR, Lebrato J, et al. Bioactive coatings on porous titanium for biomedical applications. Surf Coatings Technol 2018;349:584–92. https://doi.org/10.1016/j.surfcoat.2018.06.037.
Bai Y, Park IS, Lee SJ, Bae TS, Duncan W, Swain M, et al. One-step approach for hydroxyapatite-incorporated TiO 2 coating on titanium via a combined technique of micro-arc oxidation and electrophoretic deposition. Appl Surf Sci 2011;257:7010–8. https://doi.org/10.1016/j.apsusc.2011.03.058.
Eraković S, Veljović D, Diouf PN, Stevanović T, Mitrić M, Janaćković D, et al. The effect of lignin on the structure and characteristics of composite coatings electrodeposited on titanium. Prog Org Coatings 2012;75:275–83. https://doi.org/10.1016/j.porgcoat.2012.07.005.
Beig B, Liaqat U, Niazi MFK, Douna I, Zahoor M, Niazi MBK. Current challenges and innovative developments in hydroxyapatite-based coatings on metallic materials for bone implantation: A review. Coatings 2020;10:1–29. https://doi.org/10.3390/coatings10121249.
Binawidya K, Hr JL, Km S. Pengaruh Penambahan Hidroksiapatit dan Waktu Pencelupan Terhadap Pelapisan Logam Stainless Steel dengan Metode Dip Coating. Jom FTEKNIK 2016;3:1–7.
Hidayah P Husni. Pelapisan Hidroksiapatit pada Stainless Steel 316 L Menggunakan Metode Dip Coating dengan Variasi Rasio Binder Pati Sagu dan Waktu Pengadukan. 2016;50:3–10.
Asri RIM, Harun WSW, Hassan MA, Ghani SAC, Buyong Z. A review of hydroxyapatite-based coating techniques: Sol-gel and electrochemical depositions on biocompatible metals. J Mech Behav Biomed Mater 2016;57:95–108. https://doi.org/10.1016/j.jmbbm.2015.11.031.
Pascasarjana S. Ti-6Al-4V TERLAPIS HIDROKSIAPATIT-GELATIN MENGGUNAKAN METODE DIP-COATING TERMODIFIKASI SEBAGAI IMPLAN TULANG SILVIA MONICA. 2017.
Li Q, Ye W, Gao H, Gao L. Improving the corrosion resistance of ZEK100 magnesium alloy by combining high-pressure torsion technology with hydroxyapatite coating. Mater Des 2019;181:107933. https://doi.org/10.1016/j.matdes.2019.107933.
Soon G, Pingguan-Murphy B, Lai KW, Akbar SA. Review of zirconia-based bioceramic: Surface modification and cellular response. Ceram Int 2016;42:12543–55. https://doi.org/10.1016/j.ceramint.2016.05.077.
Schünemann FH, Galárraga-Vinueza ME, Magini R, Fredel M, Silva F, Souza JCM, et al. Zirconia surface modifications for implant dentistry. Mater Sci Eng C 2019;98:1294–305. https://doi.org/10.1016/j.msec.2019.01.062.
Harun WSW, Asri RIM, Sulong AB, Ghani SAC, Ghazalli Z. Hydroxyapatite-Based Coating on Biomedical Implant. Hydroxyapatite - Adv. Compos. Nanomater. Biomed. Appl. Its Technol. Facet., 2018. https://doi.org/10.5772/intechopen.71063.
Biokeramik SB. The Preparation of Hydroxyapatite – Zirconia Composites as Bioceramic Materials 2018;27:40–50. Sulistyo S. Dampak Proses Sintering Material Keramik pada Sifat Mekanik dan Dimensi Suatu Produk. Rotasi 2019;20:244. https://doi.org/10.14710/rotasi.20.4.244-248.
Juliadmi D, Harlendri, Hon Tjong D, Manjas M, Gunawarman. The Effect of Sintering Temperature on Bilayers Hydroxyapatite Coating of Titanium (Ti-6Al-4V) ELI by Electrophoretic Deposition for Improving Osseointegration. IOP Conf. Ser. Mater. Sci. Eng., vol. 547, 2019. https://doi.org/10.1088/1757-899X/547/1/012005.
Juliadmi D, Oktaviana D, Hon D, Manjas M. Hydroxyapatite Bilayers Coating on Screw Implant Ti6Al4V ELI with Electrophoretic Deposition Method for Improving Osseointegration 2018;51:14–8.
Gnanavel S, Ponnusamy S, Mohan L. Biocompatible response of hydroxyapatite coated on near-β titanium alloys by E-beam evaporation method. Biocatal Agric Biotechnol 2018;15:364–9. https://doi.org/10.1016/j.bcab.2018.07.014.
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under an Attribution 4.0 International (CC BY 4.0) that allows others to share — copy and redistribute the material in any medium or format and adapt — remix, transform, and build upon the material for any purpose, even commercially with an acknowledgment of the work's authorship and initial publication in this journal.