Prediksi Penjualan Obat Dan Alat Kesehatan Terlaris Menggunakan Algoritma K-Nearest Neighbor

  • Abdul Azis Program Studi Teknik Informatika, Fakultas Teknik, Universitas Pelita Bangsa
  • Ahmad Turmudi Zy Program Studi Teknik Informatika, Fakultas Teknik, Universitas Pelita Bangsa
  • Aswan S Sunge Program Studi Teknik Informatika, Fakultas Teknik, Universitas Pelita Bangsa
Keywords: Analysis, Medicine, Medical Devices, K-Nearest Neighbor

Abstract

This vital health phenomenon raises problems related to identifying medicinal products and medical equipment that are most frequently prescribed by specialist doctors, and are in demand by patients, as well as efficient stock management. The main challenge faced by hospitals is the difficulty in predicting which medicines and health devices are most in demand. This research analyzes and predicts the best-selling medicines and medical devices based on historical sales and demand data. By adopting a machine learning approach using the K-Nearest Neighbors (KNN) algorithm, research can help hospitals optimize services, especially the availability of stock of medicines and health equipment. The analysis results provide deep insight into patient preferences and demand trends by specialist doctors, enabling smarter stock management adjustments. It is hoped that this solution will reduce stock shortages and waste of storage resources, contributing to more efficient healthcare services. In conclusion, this research shows that the KNN algorithm can provide intelligent solutions to overcome complex challenges in managing valuable health resources.

Downloads

Download data is not yet available.

References

A. Pratiwi, “( PREDICTIVE ANALYSIS OF BEST-SELLING PLASTIC MILLS USING THE K-NEAREST NEIGHBOR Disusun oleh :,” 2023.

Z. Zhai, H. Jiang, L. Lu, and Y. Liu, “Adaptive truncation coding for computed tomography images,” Proc. 2014 Int. Symp. Inf. Technol. ISIT 2014, pp. 115–118, 2015, doi: 10.1201/b18776-23.

r a Manullang and f a Sianturi, “Penerapan Algoritma K-Nearest Neighbor Untuk Memprediksi Kelulusan Mahasiswa,” J. Ilmu Komput. Dan …, vol. 4, no. 2, pp. 15–23, 2021, [Online]. Available: http://ejournal.sisfokomtek.org/index.php/jikom/article/view/155

R. Rismala, I. Ali, and A. Rizki Rinaldi, “Penerapan Metode K-Nearest Neighbor Untuk Prediksi Penjualan Sepeda Motor Terlaris,” JATI (Jurnal Mhs. Tek. Inform., vol. 7, no. 1, pp. 585–590, 2023, doi: 10.36040/jati.v7i1.6419.

A. A. Putri, “Penerapan Data Mining Untuk Memprediksi Penjualan Buah Dan Sayur Menggunakan Metode K-Nearest Neighbor ( Studi Kasus : PT . Central Brastagi Utama ),” vol. 1, no. 6, pp. 354–361, 2021.

Y. Septiani, E. Aribbe, and R. Diansyah, “ANALISIS KUALITAS LAYANAN SISTEM INFORMASI AKADEMIK UNIVERSITAS ABDURRAB TERHADAP KEPUASAN PENGGUNA MENGGUNAKAN METODE SEVQUAL (Studi Kasus : Mahasiswa Universitas Abdurrab Pekanbaru),” J. Teknol. Dan Open Source, vol. 3, no. 1, pp. 131–143, 2020, doi: 10.36378/jtos.v3i1.560.

A. Bisri and M. Man, “Machine Learning Algorithms Based on Sampling Techniques for Raisin Grains Classification,” Int. J. Informatics Vis., vol. 7, no. 1, pp. 7–14, 2023, doi: 10.30630/joiv.7.1.970.

Y. Dani and M. A. Ginting, “Classification of Predicting Customer Ad Clicks Using Logistic Regression and k-Nearest Neighbors,” Int. J. Informatics Vis., vol. 7, no. 1, pp. 98–104, 2023, doi: 10.30630/joiv.7.1.1017.

A. Lailiyah, “Tingkat Pengetahuan Masyarakat Tentang Penggunaan Dan Penyimpanan Obat Bebas Dan Bebas Terbatas Di Apotek Sambeng Farma,” Skripsi. Univ. Muhammadiyah Gresik, pp. 3–16, 2019.

Y. Saintika, S. Astiti, D. J. A. Kusuma, and A. W. Muhammad, “Analysis of E-learning readiness level of public and private universities in central Java, Indonesia,” Regist. J. Ilm. Teknol. Sist. Inf., vol. 7, no. 1, pp. 15–30, 2021, doi: 10.26594/register.v7i1.2042.

H. S. Amalia, U. Athiyah, and A. W. Muhammad, “The Application of Modified K-Nearest Neighbor Algorithm for Classification of Groundwater Quality Based on Image Processing and pH, TDS, and Temperature Sensors,” Regist. J. Ilm. Teknol. Sist. Inf., vol. 9, no. 1, pp. 42–54, 2023, doi: 10.26594/register.v9i1.2827.

Monita, “Mengenal Klasifikasi, Jenis dan Regulasi Terkait Pengadaan Alat Kesehatan Dalam Rangka Melakukan Pengawasan dan Mencegah Adanya Fraud/Kecurangan di Masa Pandemi Covid 19,” pp. 1–15, 2020.

M. Rizq Daffa Jodi, “Fakultas Komputer Algoritma dan Struktur data,” Fak. Kompiter, vol. 1, pp. 1–10, 2020.

V. No, O. Hal, S. Mendrofa, and J. I. Sihotang, “Analisis Tingkat Kematangan Learning Management System SMAN 1 Parongpong Menggunakan Framework COBIT 5 Domain DSS03 &,” vol. 5, no. 4, pp. 492–502, 2023.

M. Afdhal, V. Ariandi, and R. Rita, “Memprediksi Penjualan Pada Toko Hanifah Metode C.45,” J. Teknol. Dan Sist. Inf. Bisnis, vol. 4, no. 2, pp. 248–255, 2022, doi: 10.47233/jteksis.v4i1.460.

O. S. Udang, M. Tabaru, E. A. M. Sampetoding, and E. S. Manapa, “Pengolahan Data Siswa SMA Negeri 1 Sambuara Kabupaten Kepulauan Talaud Pada Aplikasi DAPODIK,” J. Dyn. Saint, vol. 6, no. 1, pp. 7–11, 2021, doi: 10.47178/dynamicsaint.v6i1.1193.

M. Safii and A. Trydillah, “Implementasi Data Mining Dalam Menentukan Pola Pembelian Obat Dengan Metode Algoritma Apriori,” METHOMIKA J. Manaj. …, vol. 3, no. 1, pp. 66–71, 2019, [Online]. Available:https://ejurnal.methodist.ac.id/index.php/methomika/article/view/178%0Ahttps://ejurnal.methodist.ac.id/index.php/methomika/article/download/178/151

R. Handayani, R. F. Runtuwene, and S. A. P. Sambul, “Pengaruh Startegi Pemasaran Terhadap Peningkatan Penjualan Produk Ikan Kaleng Isabella pada PT.Sinar Purefoods Internasional Bitung,” J. Adm. Bisnis, vol. 6, no. 2, pp. 34–40, 2018.

A. A. Khaleel, A. N. Kareem, and L. H. Mahdi, “Predictive analytics on COVID-19 data using Hive based on Hadoop cluster,” Indones. J. Electr. Eng. Comput. Sci., vol. 31, no. 2, pp. 945–956, 2023, doi: 10.11591/ijeecs.v31.i2.pp945-956.

S. Syofian and A. Nugraha, “Prediksi Sistem Stok Barang Toko Elektronik Abc Dengan Algoritma Apriori Dan Metode Moving Average,” J. Sains dan Teknol., vol. 11, no. 1, pp. 27–32, 2021.

V. No, O. Hal, Y. Bahtera, E. Uliyanti, and P. Br, “Analisis Perbandingan Metode Marker dan Markerless Angka 0-9 3D Pada Teknologi Augmented Reality,” vol. 5, no. 4, pp. 454–459, 2023.

D. P. Utomo and M. Mesran, “Analisis Komparasi Metode Klasifikasi Data Mining dan Reduksi Atribut Pada Data Set Penyakit Jantung,” J. Media Inform. Budidarma, vol. 4, no. 2, p. 437, 2020, doi: 10.30865/mib.v4i2.2080.

A. T. Zy, A. S. Sunge, R. Riani, and E. Widodo, “Analisis Sentimen Terhadap Masyarakat Indonesia Di Masa PPKM Menggunakan Algoritma Naï ve Bayes,” J. SIGMA, vol. 13, no. 2, pp. 87–94, 2022.

L. Ardiani, H. Sujaini, and T. Tursina, “Implementasi Sentiment Analysis Tanggapan Masyarakat Terhadap Pembangunan di Kota Pontianak,” J. Sist. dan Teknol. Inf., vol. 8, no. 2, p. 183, 2020, doi: 10.26418/justin.v8i2.36776.

Karsito and S. Susanti, “Klasifikasi Kelayakan Peserta Pengajuan Kredit Rumah Dengan Algoritma Naïve Bayes Di Perumahan Azzura Residencia,” J. Teknol. Pelita Bangsa, vol. 9, pp. 43–48, 2019.

Sunge, Aswan Supriyadi, and Ahmad Turmudi Zy. "ANALISIS PREDIKSI PENJUALAN DENGAN METODE REGRESI LINEAR DI PT. EAGLE INDUSTRY INDONESIA." Jurnal Informatika Teknologi dan Sains (Jinteks) 5.3 (2023): 398-403.

Published
2024-01-03
How to Cite
Azis, A., Zy, A. T., & Sunge, A. S. (2024). Prediksi Penjualan Obat Dan Alat Kesehatan Terlaris Menggunakan Algoritma K-Nearest Neighbor. Jurnal Teknologi Dan Sistem Informasi Bisnis, 6(1), 117-124. https://doi.org/10.47233/jteksis.v6i1.1078
Section
Articles