Perbandingan Teknik Klasifikasi Catatan Medis untuk Indeks Antropometri Status Gizi Balita

  • Arif Wicaksono Septyanto Sistem Informasi, Institut Teknologi Kalimantan
  • Henokh Lugo Hariyanto Sistem Informasi, Institut Teknologi Kalimantan
Keywords: Classification, Nutrition Toddler Status, Support Vector Machine (SVM), K-Nearest Neighbors (K-NN)

Abstract

Assessing the nutritional status of toddlers is crucial for monitoring their nutritional development. This study attempts to compare two methods of classifying the nutritional status of toddlers: using the K-Nearest Neighbors (K-NN) method and the Support Vector Machine (SVM) method based on anthropometric indices. The research aims to determine which technique is most effective for categorizing toddlers in the nutritional dataset. The data used for this process includes information such as gender, age, weight, height, and body mass index. We also calculate the nutritional status of toddlers based on anthropometric indices, including Weight for Age (WFA), Height for Age (HFA), Weight for Height (WFH), and Body Mass Index for Age (BMIFA). To gauge the effectiveness of these techniques, we use 827 toddler data as training data and 207 toddler data as test data. The results indicate that the K-Nearest Neighbors (K-NN) model achieves an accuracy of approximately 93.01%, while the SVM model has an accuracy of about 91.8%. This means that the K-NN model is slightly better than the SVM model in classifying the nutritional status of toddlers based on anthropometric indices.

Downloads

Download data is not yet available.

References

Hafizh, M., Novita, T., Guswandi, D., Syahputra, H., & Mayola, L. (2023). Implementasi Data Mining Menggunakan Algoritma Fp-Growth Untuk Menganalisa Transaksi Penjualan Ekspor Online. Jurnal Teknologi Dan Sistem Informasi Bisnis, 5(3), 242-249. https://doi.org/10.47233/jteksis.v5i3.847

F. Ayu, R. Maulida, A. Arum, and E. Nugroho, “Javanese Language Skill Level of Early Childhood in Term of the Use of Javanese Song,” Indones. J. Early Child. Educ. Stud., vol. 3, no. 1, pp. 55–60, 2014, doi: 10.15294/ijeces.v3i1.9475.

N. E. A. Putri, D. Syauqy, and M. H. Hanafi, “Sistem Klasifikasi Status Gizi Bayi dengan Metode K- Nearest Neighbor Berbasis Sistem Embedded,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 1, no. 9, pp. 933–939, 2017.

Mahendradhata Y, Trisnantoro L, Listyadewi S, Soewondo P, Marthias T. et al. (‎2017)‎. The Republic of Indonesia Health System Review, Health Systems in Transition, Vol-7 No.1. WHO Regional Office for South-East Asia. https://apps.who.int/iris/handle/10665/254716

A. Hendra and G. Gazali, “Support Vector Machine (SVM) For Toddler’s Nutritional Classification in Palu City,” Insist, vol. 1, no. 1, p. 49, 2016, doi: 10.23960/ins.v1i1.19.

R. A. Putranto, S. Suryono, and J. E. Suseno, “Cloud Computing Medical Record Related Baby Nutrition Status Anthropometry Index during Postpartum,” 2018 2nd Int. Conf. Informatics Comput. Sci. ICICoS 2018, pp. 17–22, 2018, doi: 10.1109/ICICOS.2018.8621640.

R. A. Putri, S. Sendari, and T. Widiyaningtyas, “Classification of Toddler Nutrition Status with Anthropometry Calculation using Naïve Bayes Algorithm,” 3rd Int. Conf. Sustain. Inf. Eng. Technol. SIET 2018 - Proc., pp. 66–70, 2018, doi: 10.1109/SIET.2018.8693169.

S. Sendari, T. Widyaningtyas, and N. A. Maulidia, “Classification of Toddler Nutrition Status with Anthropometry using the K-Nearest Neighbor Method,” ICEEIE 2019 - Int. Conf. Electr. Electron. Inf. Eng. Emerg. Innov. Technol. Sustain. Futur., pp. 154–158, 2019, doi: 10.1109/ICEEIE47180.2019.8981408.

N. Purwati, “The classification of the nutritional status of children under five based on the anthropometric index of w / u and w / h uses the backpropagation algorithm,” Indones. J. Netw. Secur., vol. 5, no. 4, pp. 12–18, 2016.

E. Budianita and Novriyanto, “Classification of Toddler Nutritional Status Based on Anthropometric Indicators of Body Weight by Age Using Learning Vector Quantization,” (Seminar Nas. Teknol. Informasi, Komun. dan Ind. SNTIK, no. November, pp. 213–220, 2015, [Online]. Available: ejournal.uin-suska.ac.id › SNTIKI › article › download%0A.

Okfalisa, I. Gazalba, Mustakim, and N. G. I. Reza, “Comparative analysis of k-nearest neighbor and modified k-nearest neighbor algorithm for data classification,” Proc. - 2017 2nd Int. Conf. Inf. Technol. Inf. Syst. Electr. Eng. ICITISEE 2017, vol. 2018-Janua, pp. 294–298, 2018, doi: 10.1109/ICITISEE.2017.8285514.

J. Wu and H. Yang, “Linear Regression-Based Efficient SVM Learning for Large-Scale Classification,” IEEE Trans. Neural Networks Learn. Syst., vol. 26, no. 10, pp. 2357–2369, 2015, doi: 10.1109/TNNLS.2014.2382123.

D. T. Larose and C. D. Larose, Discovering Knowledge In Data An Introduction To Data Mining Second Edition Wiley Series On Methods And Applications In Data Mining. 2014. doi:10.1002/9781118874059

D. P. Ankerst, “BOOK REVIEW: Book Review,” Biometrics, vol. 74, no. 3, pp. 1132–1132, 2018, doi: 10.1111/biom.12944.

M. J. Leo and S. Suchitra, “SVM based expression-invariant 3D face recognition system,” Procedia Comput. Sci., vol. 143, pp. 619–625, 2018, doi: 10.1016/j.procs.2018.10.441.

Y. Pang, K. Zhang, Y. Yuan, and K. Wang, “Distributed object detection with linear SVMs,” IEEE Trans. Cybern., vol. 44, no. 11, pp. 2122–2133, 2014, doi: 10.1109/TCYB.2014.2301453.

G. Katiyar, “Off-Line Handwritten Character Recognition System Using Support Vector Machine,” Am. J. Neural Networks Appl., vol. 3, no. 2, p. 22, 2017, doi: 10.11648/j.ajnna.20170302.12.

M. R. Phangtriastu, J. Harefa, and D. F. Tanoto, “Comparison between Neural Network and Support Vector Machine in Optical Character Recognition,” Procedia Comput. Sci., vol. 116, pp. 351–357, 2017, doi: 10.1016/j.procs.2017.10.061.

R. Romero, E. L. Iglesias, and L. Borrajo, “A linear-RBF multikernel SVM to classify big text corpora,” Biomed Res. Int., vol. 2015, 2015, doi: 10.1155/2015/878291.

Z. Wang and X. Sun, “Document classification algorithm based on MMP and LS-SVM,” Procedia Eng., vol. 15, pp. 1565–1569, 2011, doi: 10.1016/j.proeng.2011.08.291.

C. Hue, M. Boullé, and V. Lemaire, “Online learning of aweighted selective naive bayes classifier with non-convex optimization,” Stud. Comput. Intell., vol. 665, pp. 3–17, 2017, doi: 10.1007/978-3-319-45763-5_1.

A. Lawi and F. Aziz, “Classification of credit card default clients using LS-SVM ensemble,” Proc. 3rd Int. Conf. Informatics Comput. ICIC 2018, pp. 1–4, 2018, doi: 10.1109/IAC.2018.8780427.

X. Wu, W. Zuo, L. Lin, W. Jia, and D. Zhang, “F-SVM: Combination of Feature Transformation and SVM Learning via Convex Relaxation,” IEEE Trans. Neural Networks Learn. Syst., vol. 29, no. 11, pp. 5185–5199, 2018, doi: 10.1109/TNNLS.2018.2791507.

A. Lawi and F. Aziz, “Classification of credit card default clients using LS-SVM ensemble,” Proc. 3rd Int. Conf. Informatics Comput. ICIC 2018, pp. 1–4, 2018, doi: 10.1109/IAC.2018.8780427.

R. Arian, A. Hariri, A. Mehridehnavi, A. Fassihi, and F. Ghasemi, “Protein kinase inhibitors’ classification using K-Nearest neighbor algorithm,” Comput. Biol. Chem., vol. 86, no. August 2019, p. 107269, 2020, doi: 10.1016/j.compbiolchem.2020.107269.

E. Fadaei-Kermani, G. A. Barani, and M. Ghaeini-Hessaroeyeh, “Drought monitoring and prediction using k-nearest neighbor algorithm,” J. AI Data Min., vol. 5, no. 2, pp. 319–325, 2017.

Published
2024-01-15
How to Cite
Septyanto, A., & Hariyanto, H. (2024). Perbandingan Teknik Klasifikasi Catatan Medis untuk Indeks Antropometri Status Gizi Balita. Jurnal Teknologi Dan Sistem Informasi Bisnis, 6(1), 229-235. https://doi.org/10.47233/jteksis.v6i1.1064
Section
Articles