Karakterisasi Sebaran Binomial Negatif-Binomial Negatif

  • Deby Handayani Fakultas Ekonomi, Universitas Sumatera Barat
Keywords: Convolution, Characteristics, Negative Binomial - Negative Binomial Distribution

Abstract

This study discusses the convolution or the sum of independent and identical random variables, where the random variables are two distribution of Negative Binomial distribution so that the resulting distribution is known as the Negative Binomial - Negative Binomial. The purpose of this study is to find the characteristics of the distribution including the expected value, the variance value, the moment generating function and the characteristic function. This property is obtained by using theorems and lemmas that relate to the properties of a distribution. It is found that the expected value, variance value, moment generating function and characteristic function of the Negative Binomial-Exponential distribution are

 

References

[1] Artikis, T. 1981. "Constructing Infinitely Divisible Characteristic Functions. Arc-Math, hal 57-62
[2] Bain, L.J. dan M. Engelharot. 1992. “Introduction to Probability and Mathematical Statistics Second Edition". Duxbury Press, California.
[3] Casella, G. dan R. L, Berger. 1990. “Statistical Inference Ed. 1". Pacific Grove, California.
[4] Chung, K. L. 2001. “A Course In Probability Theory. 3rded". Academy Press, Sandiago.
[5] Furman, E. 2007. “On the Convolution oh The Negative Binomial Random Variables”. Statistics and probability Letter. Vol 77 Hal 169-172.
[6] Handayani, D. 2021. “Karakteristik Sebaran Binomial Negatif-Eksponesial”.Jostech, hal (115-123)
[7] Laha, R.G. dan V.K . Rohagi. 1979. “Probability Theory". Jhon Willey Son, New York.
[8] Lukacs, E. 1992. “Characteristic Function". Griffin, London.
[9] Mainardi, F dan S. Rogosin. 2005. 2005. “The Origin of Infinitely Divisible Distribution: from de Finetti’s problem to Levy-Khintchine Formula". MMEF, Vol 1(2005), pp 37-55.
[10] Panjer, H.H. dan G.E. Willot. 1981. “Finite Sum Evaluation of The Negative Binomial-Eksponensial Model". Astin Buletin, 133-137.
[11] Sato, K. 2013. “levy processes and Infinitely Divisible Distibutions". Cambridge Studies in Advance Mathematics.
[12] Schmidli, H. 2013. “Risk Theory". Institute of Mathematics: University of Cologne. Pp 133-137.
[13] Steutel, F.W. dan Vanham, K. 2013. “Infinite Divisibility of Probability Distribution On the Real Line". Marcel Dekker, Inc, Newyork.
[14] Wabg, Z. 2011. “One mix Negative Binomial istribution with Application”. Statistical Planning. Hal 1153-1160.
[15] While, J. 1975. “Analysis of Queuing System Edition". Academic Press, Newyork.
Published
2022-07-26
How to Cite
Handayani, D. (2022). Karakterisasi Sebaran Binomial Negatif-Binomial Negatif. Jurnal Penelitian Dan Pengkajian Ilmiah Eksakta, 1(2), 94-97. https://doi.org/10.47233/jppie.v1i2.558