Implementasi Data Mining Menggunakan Algoritma Fp-Growth Untuk Menganalisa Transaksi Penjualan Ekspor Online
Abstract
In today's online technology, we have to learn various things so that we can adjust to social behavior, for example, buying and selling activities that cover all walks of life, now everyone doesn't hesitate to shop online. The online market is growing fast, especially in Indonesia. Anyone can sell and buy goods easily through online stores, so that people's purchasing power and sales increase due to the proliferation of online stores, XYZ stores are still beginners in terms of sales strategies so they try all efforts without careful preparation, one of the ways to do this is to expand its market coverage even to export goods abroad. the process of exporting goods in the current era is not a difficult thing to do, but it requires knowledge and preparation of a good strategy. from existing sales data can be analyzed to determine the right strategy in marketing goods. Data Mining is a science that helps analyze large amounts of data with the aim of gaining new knowledge that can be utilized. In Data Mining Analysis there is the FP-Growth algorithm which is a data mining technique for finding association rules from lots of data. This is known as the Association rule, where the rule will be determined from the minimum support and confidence results. the rules that are formed produce 10 rules out of 51 existing data, these rules help determine the export sales strategy at the XYZ store.
Downloads
References
Susanto, “Rancang Bangun Aplikasi E-Commerce Penjualan Helm Menggunakan Metode Simple Additive Weighting (Saw) (Studi Kasus : Gallery Helm Jogja ),” J. Teknol. Dan Sist. Inf. Bisnis, vol. 4, no. 1, pp. 20–34, 2022, [Online]. Available: https://doi.org/10.47233/jteksis.v4i1.346.
S. Junaidi and T. Mary, “Metode Data Mining Association Rule Dengan Algoritma Fp-Growth Untuk Mengetahui Kelulusan Tepat Waktu Mahasiswa …,” Edik Inform., vol. 7, no. 1, pp. 9–18, 2019.
D. Mining, “ANALISIS REKOMENDASI PRODUK MENGGUNAKAN ALGORITMA ECLAT BERDASARKAN RIWAYAT DATA PENJUALAN PT XYZ,” vol. 3, no. 2, pp. 395–411, 2021.
M. Safii and A. Trydillah, “METHOMIKA: Jurnal Manajemen Informatika & Komputerisasi Akuntansi IMPLEMENTASI DATA MINING DALAM MENENTUKAN POLA PEMBELIAN OBAT DENGAN METODE ALGORITMA APRIORI,” METHOMIKA J. Manaj. Inform. Komputerisasi Akunt., vol. 3, no. 1, p. 66, 2019, [Online]. Available: https://doi.org/10.46880/jmika.Vol3No1.pp66-71.
L. K. Sihombing, T. Tugiono, and U. F. Sari, “Implementasi Data Mining Dalam Menganalisa Pola Penjualan Roti Menggunakan Algoritma Fp-Growth,” J. Sist. Inf. Triguna Dharma (JURSI TGD), vol. 1, no. 3, p. 228, 2022, doi: 10.53513/jursi.v1i3.5288.
M. Afdhal, V. Ariandi, and R. Rita, “Memprediksi Penjualan Pada Toko Hanifah Metode C.45,” J. Teknol. Dan Sist. Inf. Bisnis, vol. 4, no. 2, pp. 248–255, 2022, doi: 10.47233/jteksis.v4i1.460.
Di. P. Mulya, “Analisa Dan Implementasi Association Rule Dengan Algoritma Fp-Growth Dalam Seleksi Pembelian Tanah Liat (Studi Kasus Di Pt. Anveve Ismi Berjaya),” J. Teknol. Dan Sist. Inf. Bisnis, vol. 1, no. 1, pp. 47–57, 2019, doi: 10.47233/jteksis.v1i1.6.
Yoga Religia, Agung Nugroho, and Wahyu Hadikristanto, “Klasifikasi Analisis Perbandingan Algoritma Optimasi pada Random Forest untuk Klasifikasi Data Bank Marketing,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 5, no. 1, pp. 187–192, 2021, doi: 10.29207/resti.v5i1.2813.
A. Nugroho and Y. Religia, “Analisis Optimasi Algoritma Klasifikasi Naive Bayes menggunakan Genetic Algorithm dan Bagging,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), 2021, doi: 10.29207/resti.v5i3.3067.
R. Aditiya, S. Defit, and G. W. Nurcahyo, “Prediksi Tingkat Ketersediaan Stock Sembako Menggunakan Algoritma FP-Growth dalam Meningkatkan Penjualan,” J. Inform. Ekon. Bisnis, 2020, doi: 10.37034/infeb.v2i3.44.
S. P. Tamba, A. W. Tan, Y. Gunawan, and A. Andreas, “PENERAPAN DATA MINING UNTUK PEMBUATAN PAKET PROMOSI PENJUALAN MENGGUNAKAN KOMBINASI FP-TREE DAN TID-LIST,” J. Tek. Inf. dan Komput., vol. 4, no. 2, p. 201, 2021, doi: 10.37600/tekinkom.v4i2.309.
A. Nastuti and S. Z. Harahap, “TEKNIK DATA MINING UNTUK PENENTUAN PAKET HEMAT SEMBAKO DAN KEBUTUHAN HARIAN DENGAN MENGGUNAKAN ALGORITMA FP-GROWTH (STUDI KASUS DI ULFAMART LUBUK ALUNG),” J. Inform., 2019, doi: 10.36987/informatika.v7i3.1381.
M Hafizh, “Memprediksi Hasil Penjualan Toko Online dengan Simulasi Monte Carlo,” Indones. J. Comput. Sci., 2021, doi: 10.33022/ijcs.v10i2.3010.
Gushelmi, “Analisa Algoritma Association Rule pada Calon Mahasiswa Program Magister di masa Pandemi dengan Metode FP-Growth,” SATIN - Sains dan Teknol. Inf., 2022, doi: 10.33372/stn.v8i2.908.
R. F. Bania, “ANALISIS TINGKAT KEJAHATAN ANAK DIBAWAH UMUR MENGGUNAKAN METODE FP-GROWTH (STUDI KASUS DI POLRESTA PADANG),” Syntax J. Softw. Eng. Comput. Sci. Inf. Technol., 2020, doi: 10.46576/syntax.v1i1.646.
W. N. Setyo and S. Wardhana, “IMPLEMENTASI DATA MINING PADA PENJUALAN PRODUK DI CV CAHAYA SETYA MENGGUNAKAN ALGORITMA FP-GROWTH,” PETIR, vol. 12, no. 1, pp. 54–63, 2019, doi: 10.33322/petir.v12i1.416.
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under an Attribution 4.0 International (CC BY 4.0) that allows others to share — copy and redistribute the material in any medium or format and adapt — remix, transform, and build upon the material for any purpose, even commercially with an acknowledgment of the work's authorship and initial publication in this journal.