Pemanfaatan Google Colab Untuk Aplikasi Pendeteksian Masker Wajah Menggunakan Algoritma Deep Learning YOLOv7

  • Rangga Gelar Guntara Universitas Pendidikan Indonesia
Keywords: face mask, deep learning, YOLOv7

Abstract

From a comprehensive review of facial mask detection techniques, there are several algorithms based on deep learning, namely You Only Look Once (YOLO), Single Shot Detector (SSD), RetinaFace, and (Faster Recurrent Convolutional Neural Network) Faster R-CNN. Previous studies focused on the detection accuracy of face masks using a two-stage detection model (ie, Faster R-CNN), while single-stage detectors (ie, YOLO) achieved fast inference times but lower accuracy. The training results in this study show that the Precision value is consistent at 0.4 – 0.8. While the maximum recall value is 0.6. Future research will focus on using YOLOv7 for other object detection.

Downloads

Download data is not yet available.

References

[1] A. Nowrin, S. Afroz, Md. S. Rahman, I. Mahmud, and Y.-Z. Cho, “Comprehensive Review on Facemask Detection Techniques in the Context of Covid-19,” IEEE Access, vol. 9, pp. 106839–106864, 2021, doi: 10.1109/ACCESS.2021.3100070.
[2] R. A. S. Naseri, A. Kurnaz, and H. M. Farhan, “Optimized face detector-based intelligent face mask detection model in IoT using deep learning approach,” Appl Soft Comput, vol. 134, p. 109933, Feb. 2023, doi: 10.1016/j.asoc.2022.109933.
[3] Althaf Adhari Rachman and Ivan Maurits, “SISTEM DETEKSI PEMAKAIAN MASKER PADA WAJAH SECARA REAL TIME MENGGUNAKAN FRAMEWORK TENSORFLOW DAN LIBRARY OPENCV,” Jurnal Ilmiah Teknik, vol. 2, no. 1, pp. 49–59, Jan. 2023, doi: 10.56127/juit.v2i1.496.
[4] W. Zhu, H. Zhang, J. Eastwood, X. Qi, J. Jia, and Y. Cao, “Concrete crack detection using lightweight attention feature fusion single shot multibox detector,” Knowl Based Syst, vol. 261, p. 110216, Feb. 2023, doi: 10.1016/j.knosys.2022.110216.
[5] X. Fan and M. Jiang, “RetinaFaceMask: A Single Stage Face Mask Detector for Assisting Control of the COVID-19 Pandemic,” May 2020.
[6] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks,” IEEE Trans Pattern Anal Mach Intell, vol. 39, no. 6, pp. 1137–1149, Jun. 2017, doi: 10.1109/TPAMI.2016.2577031.
[7] N. D. T. Yung, W. K. Wong, F. H. Juwono, and Z. A. Sim, “Safety Helmet Detection Using Deep Learning: Implementation and Comparative Study Using YOLOv5, YOLOv6, and YOLOv7,” in 2022 International Conference on Green Energy, Computing and Sustainable Technology (GECOST), Oct. 2022, pp. 164–170. doi: 10.1109/GECOST55694.2022.10010490.
[8] S. Liu, Y. Wang, Q. Yu, H. Liu, and Z. Peng, “CEAM-YOLOv7: Improved YOLOv7 Based on Channel Expansion and Attention Mechanism for Driver Distraction Behavior Detection,” IEEE Access, vol. 10, pp. 129116–129124, 2022, doi: 10.1109/ACCESS.2022.3228331.
[9] S. Elfwing, E. Uchibe, and K. Doya, “Sigmoid-weighted linear units for neural network function approximation in reinforcement learning,” Neural Networks, vol. 107, pp. 3–11, Nov. 2018, doi: 10.1016/j.neunet.2017.12.012.
[10] T. Q. Vinh and N. T. N. Anh, “Real-Time Face Mask Detector Using YOLOv3 Algorithm and Haar Cascade Classifier,” in 2020 International Conference on Advanced Computing and Applications (ACOMP), Nov. 2020, pp. 146–149. doi: 10.1109/ACOMP50827.2020.00029.
[11] R. T. Handayanto and H. Herlawati, “Prediksi Kelas Jamak dengan Deep Learning Berbasis Graphics Processing Units,” Jurnal Kajian Ilmiah, vol. 20, no. 1, pp. 67–76, Jan. 2020, doi: 10.31599/jki.v20i1.71.
Published
2023-02-12
How to Cite
Gelar Guntara, R. (2023). Pemanfaatan Google Colab Untuk Aplikasi Pendeteksian Masker Wajah Menggunakan Algoritma Deep Learning YOLOv7. Jurnal Teknologi Dan Sistem Informasi Bisnis, 5(1), 55-60. https://doi.org/10.47233/jteksis.v5i1.750
Section
Articles