Sistem Rekomendasi Produk Somethinc Menggunakan Metode Content-based Filtering

Abstract
In choosing skin care products, many consumers often make mistakes due to a lack of understanding of skin type and a lack of knowledge about skin care products available on the market. This often makes it difficult for them to find suitable products. This research aims to design an application that is able to provide skincare recommendations based on previous product preferences. The method used is Content-based filtering. The recommendation process is carried out by comparing product content to produce the highest to lowest ranking, as well as calculating the minimum support and confidence values to determine association rules for itemset combinations. To calculate the similarity between words using the cosine similarity algorithm, product descriptions will be given a value using TF-IDF (Term Frequency-Inverse Document Frequency) calculations. After that, the similarity weight will be calculated using the cosine similarity algorithm, the similarity weights from highest to lowest. In this research, the product with the highest similarity value was obtained with a value of 0.722.
Downloads
References
V. N. Yefta and D. Y. Bernanda, “Perancangan Sistem Informasi menggunakan TOGAF Dan Analisis Ward & Peppard pada SMA Santo Leo,” Jurnal Teknologi Dan Sistem Informasi Bisnis, vol. 6, no. 2, pp. 314–323, Apr. 2024, doi: 10.47233/jteksis.v6i2.1171.
K. Wakhidah, B. Budiman, and W. Winarti, “Rancangan Sistem Informasi Perpustakaan Berbasis Website Menggunakan Barcode Di Sekolah MA Raden Rahmat,” Jurnal Teknologi Dan Sistem Informasi Bisnis, vol. 5, no. 1, pp. 61–68, Feb. 2023, doi: 10.47233/jteksis.v5i1.740.
E. Ayuningrum, Y. Azhar, and G. I. Marthasari, “Sistem Rekomendasi Produk Skincare Korea Berbasis Web Menggunakan Metode Collaborative Filtering,” REPOSITOR, vol. 4, no. 4, pp. 497–506, 2022.
M. I. Rahayu, M. Kasegrina Siregar, M. Desnia, and S. Bandung, “SISTEM REKOMENDASI PEMILIHAN PRODUK BASIC SKINCARE BERDASARKAN JENIS KULIT MENGGUNAKAN ALGORITMA SIMPLE ADDITIVE WEIGHTING (SAW),” 2022.
A. Risetdikti and J. Komunikasi, “‘Somethinc’ Pada Pengguna Instagram,” vol. 13, no. 2, 2022, doi: 10.31294/jkom.
D. Ayu, N. Safitri, R. Helilintar, and L. S. Wahyuniar, “Sistem Rekomendasi Skincare Menggunakan Metode Content-Based Filtering dan Algoritma Apriori.”
M. Alkaff, H. Khatimi, and A. Eriadi, “Sistem Rekomendasi Buku pada Perpustakaan Daerah Provinsi Kalimantan Selatan Menggunakan Metode Content-Based Filtering,” MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer, vol. 20, no. 1, pp. 193–202, Sep. 2020, doi: 10.30812/matrik.v20i1.617.
A. E. Wijaya and D. Alfian, “SISTEM REKOMENDASI LAPTOP MENGGUNAKAN COLLABORATIVE FILTERING DAN CONTENT-BASED FILTERING,” Jurnal Computech & Bisnis, vol. 12, no. 1, pp. 11–27, 2018.
C. Fiarni, H. Maharani, and N. Calista, “Product Recommendation System Design Using Cosine Similarity and Content-based Filtering Methods,” 2019.
S. Purnomo and F. A. Alijoyo, “Sistem Peminjaman Barang Menggunakan QR Code Berbasis Aplikasi Android,” Jurnal Teknologi Dan Sistem Informasi Bisnis, vol. 6, no. 2, pp. 322–328, Apr. 2024, doi: 10.47233/jteksis.v6i2.1350.
M. Nurjannah, I. Fitri Astuti, and D. Program Studi, “PENERAPAN ALGORITMA TERM FREQUENCY-INVERSE DOCUMENT FREQUENCY (TF-IDF) UNTUK TEXT MINING Mahasiswa S1 Program Studi Ilmu Komputer FMIPA Universitas Mulawarman 2,3),” 2013.
R. Al Rasyid, D. Handayani, and U. Ningsih, “Penerapan Algoritma TF-IDF dan Cosine Similarity untuk Query Pencarian Pada Dataset Destinasi Wisata,” Jurnal Teknologi Informasi dan Komunikasi), vol. 8, no. 1, p. 2024, 2024, doi: 10.35870/jti.
B. U. Tri Wahyo and A. Widya Anggriawan, “Sekolah Tinggi Manajemen Informatika dan Komputer ASIA Malang 6 SISTEM REKOMENDASI PAKET WISATA SE-MALANG RAYA MENGGUNAKAN METODE HYBRID CONTENT BASED DAN COLLABORATIVE,” 2015.
M. Alkaff, H. Khatimi, and A. Eriadi, “Sistem Rekomendasi Buku pada Perpustakaan Daerah Provinsi Kalimantan Selatan Menggunakan Metode Content-Based Filtering,” MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer, vol. 20, no. 1, pp. 193–202, Sep. 2020, doi: 10.30812/matrik.v20i1.617.
L. E. Sari and W. Hadikurniawati, SISTEM PENDUKUNG KEPUTUSAN PENENTUAN SKINCARE UNTUK KULIT WAJAH MENGGUNAKAN METODE DECISION TREE (STUDI KASUS PADA KOSMETIK WARDAH).
A. Laksito and M. R. Saputra, “Content Based VGG16 Image Extraction Recommendation,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 6, no. 3, pp. 370–375, Jun. 2022, doi: 10.29207/resti.v6i3.3909.
C. Koloman, R. Maulana, R. Dwi, Z. Putri, and W. A. Harahap, “Sistem Rekomendasi Pekerjaan di bidang IT Menggunakan Algoritma Content-Based Filtering,” Journal of Creative Student Research (JCSR), vol. 1, no. 6, pp. 78–88, 2023, doi: 10.55606/jcsrpolitama.v1i6.2992.
M. Fajriansyah, P. P. Adikara, and A. W. Widodo, “Sistem Rekomendasi Film Menggunakan Content Based Filtering,” 2021.
E. Tjipta, W. Sekolah, T. Manajemen Informatika, D. Komputer, and A. Malang, “78 Sekolah Tinggi Manajemen Informatika dan Komputer ASIA Malang PERANCANGAN INFORMATION RETRIEVAL (IR) BERBASIS TERM FREQUENCY-INVERSE DOCUMENT FREQUENCY (TF-IDF) UNTUK PERINGKASAN TEKS TUGAS KHUSUS BERBAHASA INDONESIA,” 2013.
B. Herwijayanti, D. E. Ratnawati, and L. Muflikhah, “Klasifikasi Berita Online dengan menggunakan Pembobotan TF-IDF dan Cosine Similarity,” 2018.
M. A. Rofiqi, Abd. C. Fauzan, A. P. Agustin, and A. A. Saputra, “Implementasi Term-Frequency Inverse Document Frequency (TF-IDF) Untuk Mencari Relevansi Dokumen Berdasarkan Query,” ILKOMNIKA: Journal of Computer Science and Applied Informatics, vol. 1, no. 2, pp. 58–64, Dec. 2019, doi: 10.28926/ilkomnika.v1i2.18.
I. Cholissodin et al., “PEMERINGKATAN PENCARIAN PADA BUKU PEDOMAN AKADEMIK FILKOM UB MENUJU MERDEKA BELAJAR DAN FREE E-BOOK PEMBELAJARAN SEBAGAI PROTOTYPE LOCAL SMART MICRO SEARCH ENGINE MENGGUNAKAN ALGORITMA PAGERANK DAN TF-IDF”, doi: 10.25126/jtiik.202184384.
M. A. Rofiqi, Abd. C. Fauzan, A. P. Agustin, and A. A. Saputra, “Implementasi Term-Frequency Inverse Document Frequency (TF-IDF) Untuk Mencari Relevansi Dokumen Berdasarkan Query,” ILKOMNIKA: Journal of Computer Science and Applied Informatics, vol. 1, no. 2, pp. 58–64, Dec. 2019, doi: 10.28926/ilkomnika.v1i2.18.
S. Fatonah Larasati, U. Ria Safitri, L. Puji Rahayu, F. Ekonomi, and U. Boyolali Jl Pandanaran No, “PENGARUH KUALITAS PRODUK, PROMOSI DAN POTONGAN HARGA TERHADAP KEPUTUSAN PEMBELIAN PRODUK WARDAH KOSMETIK (STUDI KASUS PADA KEPUTUSAN PEMBELIAN PRODUK WARDAH KOSMETIK DI TOKO EVIAA COSMETIK KARTASURA),” Jurnal Ilmu Manajemen dan Akuntansi, vol. 9, no. 2, p. 2021, 2021.
D. Septiani and I. Isabela, “SINTESIA: Jurnal Sistem dan Teknologi Informasi Indonesia ANALISIS TERM FREQUENCY INVERSE DOCUMENT FREQUENCY (TF-IDF) DALAM TEMU KEMBALI INFORMASI PADA DOKUMEN TEKS”.
S. K. Dirjen et al., “Terakreditasi SINTA Peringkat 2 Implementasi Metode Content Based Filtering Pada Aplikasi Pencarian Taman Penitipan Anak,” masa berlaku mulai, vol. 1, no. 3, pp. 163–169, 2017.
A. Riyani, M. Zidny Naf’an #2, and A. Burhanuddin, “Penerapan Cosine Similarity dan Pembobotan TF-IDF untuk Mendeteksi Kemiripan Dokumen,” 2019.
A. E. Wijaya and D. Alfian, “SISTEM REKOMENDASI LAPTOP MENGGUNAKAN COLLABORATIVE FILTERING DAN CONTENT-BASED FILTERING,” Jurnal Computech & Bisnis, vol. 12, no. 1, pp. 11–27, 2018.

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under an Attribution 4.0 International (CC BY 4.0) that allows others to share — copy and redistribute the material in any medium or format and adapt — remix, transform, and build upon the material for any purpose, even commercially with an acknowledgment of the work's authorship and initial publication in this journal.