Sistem Prediksi Penjualan Produk APD Terlaris di PT A3 Karunia Sidoarjo menggunakan Metode Naive Bayes

  • Arinda Putri Husaini Universitas Nahdlatul Ulama Sidoarjo, FILKOM, Informatika
  • Angga Lisdiyanto Universitas Nahdlatul Ulama Sidoarjo
Keywords: Naive Bayes, PHP MySQL, Sales Prediction, Quarterly Data

Abstract

PT. A3 Karunia has been generating daily sales data but has not fully optimized its utilization, leading to a buildup of data. Therefore, data mining can be employed to address this issue. One of the data mining applications utilizes the Naïve Bayes method. This research develops a web-based prediction system using PHP and MySQL. The system utilizes 2 years' worth of sales data summarized into quarters. This results in a total of 8 quarters of sales data, which will serve as attributes in the Naive Bayes algorithm. The dataset used consists of 110 records, with 30% (32 records) designated as test classification data. By employing the Naive Bayes algorithm, classification results are obtained. The classification of test data yields an accuracy of 90.62%, with a breakdown of 3 misclassifications and the remaining 29 data points classified correctly.

Downloads

Download data is not yet available.

References

1. Chen, Z., Liu, Y., & Yang, Y, 2018. Sales Prediction for New Products Based on Naive Bayes Classifier and Random Forest. In 2018 International Conference on Mathematics and Computers in Sciences and Industry (MCSI), 180-184.

2. Khasanah, R., & Lestari, D. P. (2020). Sales Prediction of Convenience Store Using Naive Bayes Algorithm. In 2020 International Conference on Computer Engineering, Network, and Intelligent Multimedia (ICCNI), 1-5.

3. Li, W., Hu, Q., & Cheng, C. (2019). A Sales Forecasting Method Based on Naive Bayes Classification Algorithm. In 2019 International Conference on Machine Learning, Big Data and Business Intelligence (MLBDBI), 119-122. IEEE.

4. Sadikin, Y., & Ramadhani, D. (2020). Sales Forecasting using Naive Bayes Algorithm in Grocery Store. In 2020 International Conference on Information and Communications Technology (ICOIACT), 225-229.

5. Shahriar, R., & Hossain, M. S. (2019). Sales Prediction of a Retail Store Using Machine Learning. In 2019 IEEE Region 10 Symposium (TENSYMP), 800-804.

6. Tsai, Y. L., & Liu, C. C. (2019). Sales Prediction of New Products Using Naive Bayes Classifier and LSTM Neural Network. In 2019 International Conference on Machine Learning Technologies (ICMLT), 24-28.

7. Wang, J., & Han, L. (2020). Sales Forecasting Based on Naive Bayes Algorithm. In 2020 International Conference on Advanced Computer Science and Information Systems (ICACSIS). 433-438..

Abdullah, R. W., Hartanti, D., Permatasari, H., Septyanto, A. W., & Bagaskara, Y. A, 2022. Penerapan Data Mining untuk Memprediksi Jumlah Produk Terlaris Menggunakan Algoritma Naive Bayes Studi Kasus (Toko Prapti). Jurnal Ilmiah Informatika Global, 20-27.

Adriyendi, A., & Melia, Y, 2020. Klasifikasi Menggunakan Naïve Bayes Dan K-Nearest Neighbor Pada Manajemen Layanan Teknologi Informasi. Jurnal Teknologi Dan Sistem Informasi Bisnis, 99-107.

Alhayali, R. I., Ahmed, M. A., Mohialden, Y. M., & Ali, A. H, 2020. Efficient method for breast cancer classification based on ensemble hoffeding tree and naïve Bayes. Indonesian Journal of Electrical Engineering and Computer Science, 1074-1080.

Analisis Seleksi Atribut Dalam Memprediksi Kegagalan Skripsi Mahasiswa Menggunakan Algoritme Naïve Bayes pada Jurusan Sistem Informasi Universitas Brawijaya, 2023. Jurnal Teknologi Informasi Dan Ilmu Komputer, 379-384.

Ananda, W., Safii, M., & Fauzan, M, 2021. Prediksi Jumlah Hasil Panen Sawit Menggunakan Algoritma Naive Bayes. TIN: Terapan Informatika Nusantara, 513-519.

Ariandi, V., Hadi, F., & Lusinia, S. A, 2022. Sistem Pakar Untuk Mendiagnosa Penyakit Dada Dengan Menggunakan Metode Naives Bayes Dan Bahasa Pemrograman Php Dan Mysql. Jurnal Teknologi Dan Sistem Informasi Bisnis, 35-46.

Berikut adalah tujuh referensi jurnal internasional yang membahas prediksi penjualan menggunakan algoritma Naive Bayes:

Chundi, R., Hulipalled, V. R., & Simha, J. B, 2023. NBLex: emotion prediction in Kannada-English code-switch text using naïve bayes lexicon approach. International Journal of Electrical & Computer Engineering, 2088-8708.

Gunawan, B., Sastypratiwi, H., & Pratama, E. E, 2018. Sistem Analisis Sentimen pada Ulasan Produk Menggunakan Metode Naive Bayes. JEPIN (Jurnal Edukasi dan Penelitian Informatika), 113-118.

Juwita, J., Safii, M., & Damanik, B. E, 2022. Naïve Bayes Algorithm For Predicting Sales at the Pematang Siantar VJCakes Store. JOMLAI: Journal of Machine Learning and Artificial Intelligence, 337–346.

Manurung, M., & Dzulhijjah, N, 2022. Penerapan Algoritma Naïve Bayes Menentukan Tingkatan Kalori Menu Mc’Donald’s. Jurnal Teknologi Sistem Informasi, 256-265.

Qawasmeh, Y., Al-Radaideh, Q., AlQuraan, A., & Otoom, A. F, 2023. Bayes model for assessing the reading difficulty of English text for English education in Jordan. International Journal of Electrical and Computer Engineering (IJECE), 4441-4451.

S. Rahmatullah, M. Mukrim, M. Pramitha, F. Ardhy, and R. Rustam, 2019. Data Mining untuk Menentukan Produk Terlaris Menggunakan Metode Naive Bayes. Jurnal Informasi dan Komputer, 57-64.

Sidik, Agung Purnomo, 2019. Diagnosis of Types of Diseases in Cassava Plant by Bayes Method. Jurnal Online Informatika, 69-74.

Published
2024-04-09
How to Cite
Husaini, A. P., & Lisdiyanto, A. (2024). Sistem Prediksi Penjualan Produk APD Terlaris di PT A3 Karunia Sidoarjo menggunakan Metode Naive Bayes. Jurnal Teknologi Dan Sistem Informasi Bisnis, 6(2), 431-437. https://doi.org/10.47233/jteksis.v6i2.1266
Section
Articles