Pemodelan Harga Saham Menggunakan Arma-Garch
Abstract
Autoregressive Conditional Heteroscedasticity (ARCH) and Generalized Autoregressive Conditional Heteroskedasticity (GARCH) models were used for modeling with heteroscedasticity data. This study aims to determine the time series model on the stock price data of PT Triputra Agro Persada Tbk. (TAPG) with modeling ARMA, ARCH and GARCH. Based on the smallest Akaike Information Criterion (AIC) and Schwarz Criterion (SC), it shows that the ARMA(1,0)-GARCH(2,1) model is the best model for predicting the value of TAPG stock prices.
Downloads
References
Pandji, B.Y. Indwiarti & Aniq Atiqi Rohmawati, A.A.(2019).Perbandingan Prediksi Harga Saham Dengan Model Arima Dan Artificial Neural Network. Ind. Journal on Computing.Vol. 4, No. 2.
Karomah,Y.& Hendikawat, P. (2014). Estimasi Parameter Bootstrap Pada Proses Arma Dan Aplikasinya Pada Harga Saham. UNNES Journal of Mathematics, Vol. 3 No.2.
Egeten, G. R., Setiawaty, B. & Budiarti,R. (2021). Pendugaan Imbal Hasil Saham BCA dengan Model
Autoregressive Moving Average, Jambura Journal Of Mathematics. Vol. 3. No. 2: 140-154.
Desvina,A.P. & Sari, F. Y. (2020). Peramalan Nilai Indeks Harga Saham Syariah Menggunakan Metode Box-Jenkins. Jurnal Sains Matematika dan Statistika. Vol. 6. No. 1.
Iqbal, M. & Ningsih, N.W. (2021). Prediksi Harga Saham Harian PT BTPN Syariah Tbk Menggunakan Model Arima dan Model Garch. Jurnal Ilmiah Ekonomi Islam. Vol. 7. No. 3.
Sunarti, Mariani,S. & Sugiman. (2016). Perbandingan Akurasi Model Arch Dan GARCH Pada Peramalan Harga Saham Berbantuan MATLAB, UNNES Journal of Mathematics. Vol. 5. No.1.

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under an Attribution 4.0 International (CC BY 4.0) that allows others to share — copy and redistribute the material in any medium or format and adapt — remix, transform, and build upon the material for any purpose, even commercially with an acknowledgment of the work's authorship and initial publication in this journal.