Analisis Data Pola Pembelian Konsumen Dengan Algoritma Apriori Pada Transaksi Penjualan Minimarket D Mart

  • Intan Utnasari Universitas Nagoya Indonesia
Keywords: Data Mining, Apriori, Market Basket Analysis.

Abstract

Minimarket D Mart is one of the stores that sells various items of daily necessities. Minimarket D Mart when doing a transaction had using a computer but the data only has function as an archive, so that the data piles up. The data stack can obtain new information if it processed property, such as seeing the pattern of what items are of ten purchased by consumers. The study alms to determine the process of data mining analysis with apriori algorithms and to determine the rule which generated from the highest support value and confidence the method used in this study is data mining method with apriori algorithms, apriori included in the group of association rules in data mining. Besides apriori, market basket analysis method also included in its group. Market basket analysis in methodology for analysing consumer buying patterns of finding association between different items. Based in the result, the application of apriori algorithms on data mining technique is very efficient and also accelerate the process of forming trends in combination patterns of sales out come with the highest support value and confidence belong to teh pucuk, aqua with support 54% and confidence 100%.

References

[1] Adewole, K. et. al. (2014). Frequent Pattern and Association Rule Mining from Inventory Database Using Apriori Algorithm. African Journal of Computing & ICT, 7(3), 35–42. Retrieved from http://www.ajocict.net/uploads/V7 N3P4-2014_AJOCICT-Paper_4.pdf.
[2] Appriori, A. (2017). IMPLEMENTASI DATA MINING PENJUALAN HANDPHONE OPPO STORE SDC TANGGERANG DENGAN ALGORITMA APPRIORI, (November), 1–2. Badrul, M. (2016). Algoritma asosiasi dengan algoritma apriori untuk analisa data penjualan. Pilar Nusa Mandiri, XII (2), 121–129. Retrieved from http://ejournal.nusamandiri.ac.id/ejurnal/index.php/pilar/article/view/1 69/145
[3] Bangun, P. A., Rinaldi, E. J., & Laia, Y. (2019). Aplikasi Prediksi Pola Pembelian Customer dengan Metode Market Basket Analysis pada PT. Capella Medan, 2(2).
[4] Purnia, D. S., & Warnilah, A. I. (2017). Implementasi Data Mining Menggunakan Algoritma Apriori. Prosiding SINTAK 2017, 2(2), 31–39.
[5] Putra, A. A. C., Haryanto, H., & Dolphina, E. (2018). Implementasi Metode Association Rule Mining Dengan Algoritma Apriori Untuk Rekomendasi Promo Barang. Csrid, 11, 89–99.
[6] Santoso, H., Hariyadi, I. P., & Prayitno. (2016). Data Mining Analisa Pola Pembelian Produk Dengan Menggunakan Metode Algoritma Apriori. Teknik Informatika. ISSN: 2302-3805, (1), 19–24. Retrieved from http://ojs.amikom.ac.id/index.php/semnasteknomedia/article/download/1267/1200


[7] Sikumbang, E. D. (2018). Penerapan Data Mining Penjualan Sepatu Menggunakan Metode Algoritma Apriori. Jurnal Teknik Komputer AMIK BSI (JTK), 9986(September), 1–4.
[8] Srinivasa Kumar, V., Renganathan, R., VijayaBanu, C., & Ramya, I. (2018). Consumer buying pattern analysis using apriori association rule. International Journal of Pure and Applied Mathematics, 119(Special Issue 7C), 2341–2349.
[9] Yanto, R., & Khoiriah, R. (2018). Implementasi Data Mining dengan Metode Algoritma Apriori dalam Menentukan Pola Pembelian Obat. Creative Information Technology Journal, 2(2), 102. https://doi.org/10.24076/citec.2015 v2i2.41
Published
2024-01-17
How to Cite
Utnasari, I. (2024). Analisis Data Pola Pembelian Konsumen Dengan Algoritma Apriori Pada Transaksi Penjualan Minimarket D Mart. Jurnal Sistem Informasi Dan Informatika, 2(1), 1-7. https://doi.org/10.47233/jiska.v2i1.1254
Section
Articles